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Executive summary 

Deliverable D4.3 includes the SEMANTIC ESRs contributions to WP4 (Data-driven network control 

and automation). More specifically, first deliverable (D4.1) described the state of the art pertinent to WP4 

scope, and second deliverable (D4.2) explained the specific research questions on which the ESR focused, 

the approaches they adopted, and their proposed solutions. The third deliverable (D4.3) presents the 

simulations and analytical results of the proposed solutions. Depending on the maturity of the work of each 

ESRs, some results are presented. 

Section 2 presents the work currently being done at IQUADRAT by ESR Navideh Ghafouri. After a 

review of the history of the research work in the previous deliverable, this section provides the 

implementation technicalities of the proposed scheme. The simulation details and numerical results are 

presented, and the section continues by conclusion and future steps. f 

In section 3 Sudharshan Paindi Jayakumar (ESR in Nokia) proposes novel methodologies for 

optimizing and managing base station parameters in mobile communication networks. CEDA-BatOp, a 

framework for base station parameter optimization and automation, employs a machine learning approach 

to optimize base station parameters and enhance network performance. CEDA-BatOp 2.0, an extension of 

CEDA-BatOp, incorporates joint optimization, controlled drift analysis, and pseudo-labeling techniques to 

further improve network performance and address potential issues arising from parameter drift. 

Additionally, the work proposes an anomaly detection system based on Deep Generalized Canonical 

Correlation Analysis (DGCCA) to effectively identify anomalies in UE parameters, promoting network 

reliability and resilience. The proposed methodologies evaluated using simulated and real-world datasets, 

demonstrating their efficacy in optimizing base station parameters, mitigating parameter drift, and 

detecting anomalies in UE parameters. The results showcase significant improvements in network 

performance metrics, including throughput, latency, and energy efficiency. These findings highlight the 

potential of machine learning and advanced anomaly detection techniques for optimizing and managing 

base station parameters, paving the way for more efficient and reliable mobile communication networks. 

Section 4 describes the proof of concept for the methodology and evaluation carried on at Telenor 

by ESR Maryam Bandari. The ESR implement a Machine Learning (ML) based approach to help with network 

automation and management in the network disturbance domain. Many network disturbances are flooding 

the Network Operation Centers (NOC) of telecommunication (telco) companies in the form of network 

Trouble Tickets (TT). Automation plays an important role for managing these TTs to increase Quality of 

Service (QoS) and subsequently, Quality of Experience (QoE). Currently, there is a gap in literature for 

developing automated assistant systems for handling network TTs. In this work, we manage to develop a 

solution to address two challenges related to TTs generated from fixed and mobile access network 

domains: 1. prediction of resolution times and 2. prediction of onsite dispatch work needs. For the first use 

case, we come up with a 60-minute confidence interval and succeed to predict the correct resolution time 

ranges in 90% (fixed) and 80% (mobile) of the cases at TT creation time. Therefore, we have an 80% and 

61% improvement over company baseline. In second use case, there is no company baseline, and we 

achieve an average macro F1 score of 65% and 70% respectively. This indicates a significant optimization 

in workforce (resource) usage of the company. We also study the evolution of access switch TTs over time 

and the insights that can be captured as more information is added. We realize due to update of the 

information within 15 minutes of TT creation, we improve the results by 57% and 50% respectively in first 

and second use cases. 

Finally, the work done by ESR Ali Ehsanian at Eurecom is described in section 5, where the problem 

of resource allocation when several network slices compete for shared network infrastructure is addressed. 

Network slicing enables efficient and dynamic service deployment and network management of 5G and 

beyond 5G networks. It requires the capability to allocate to each slice the desired resources. This task is in 

reality very complicated, where the traditional approaches struggle to properly manage resource allocation 

because of the lack of precise models and hidden problem structures. Section 5 presents a data driven 
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algorithm for optimal resource allocation between slices in sliced virtualized mobile networks, to avoid 

under-provisioning and overprovisioning. The approach is based on a Distributed Deep Neural Network 

(DDNN) architecture which is distributed over edge and the cloud that attempts to exploit correlations 

between the demands of different slices/resources. The proposed DDNN is a DNN with multiple exit points; 

one local exit (e.g. in RAN) and one remote exit (e.g. in MEC). The DDNN needs to be trained jointly  in order 

to achieve the desired goals. In the joint training a weight is assigned to local exit and a weight to remote 

exit, which forces the local exit to have good performance and also affects the remote exit performance. 

Also, the objective function plays an important role to avoid underprovisioning. The work introduce two 

different confidence mechanisms that in the online mode can decide just based on the output of the local 

exit (local predictions) either the local exit output is good enough to be used for resource allocation or the 

data must be sent to the remote layers where a better decision can be made. Performances evaluated 

through simulation and compared with state of art. 
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1 Introduction and document structure 

SEMANTIC “end-to-end Slicing and data-drivEn autoMAtion of Next generation cellular neTworks 

with mobIle edge Clouds” is a H2020 ITN project funded by the EU, which aims to create an innovative 

research and training network for multi-GHz spectrum communications, MEC-empowered service 

provisioning and end-to-end network slicing, all integrated and jointly orchestrated by forward-looking 

data-driven network control and automation exploiting the enormous amounts of mobile big data spurred 

into the mobile data network. 

In this document, SEMANTIC ESRs contribute to the deliverable D4.3 titled “Performance evaluation 

of automated network control and proof-of-concept” towards the objectives of WP4 (Data-driven network 

control and automation). This document summarizes the developments in key findings of the ESRs towards 

the task 4.3. This includes designing and implementing data-driven algorithmic framework to combine 

machine learning with model-base optimizations for predicting network performance, detecting anomalies 

and to prevent failures. 

 

2 Multi-level Network Slicing and Resource Management in 6G 

  
2.1 Introduction 

This section starts with a review of the last deliverable. As mentioned in deliverable 4.2, we consider 

an O-RAN-based architecture for the 6G system model, and we proposed a network slicing and resource 

management benefiting from the programmability and openness of ORAN. The general approach consists 

of two levels: centralized decision-making and decentralized slice realization. The preliminaries, and 

enabling technologies were presented in the previous deliverable. To continue, Figure 1 shows the system 

model and where each level of management is located. In the next section of this deliverable, we present 

the implementation technicalities of the general idea. Simulation details and numerical results are provided 

and future steps are presented in the end. 

 

Figure 1 - System model and agent placements  

 

2.2 The Implementation Technicalities and Numerical Results 

Following the description of how the proposed scheme fits into the system model in deliverable 4.2, 

the technical details of the implementation need to be taken care of. 
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Figure 2 - The proposed approach: Agents and environments communication. 

 

Figure 3 - The proposed approach: Time slots and control loops. 

As shown in Figures 2 and 3, both levels are described as follows:  

High-level Part: As mentioned earlier, 6G networks will consider additional service types to the three 

main types already available in 5G. Thus, according to the service types suggested in [1], we consider 5 slice 

types for our 6G environment, including  FeMBB: further-enhanced mobile broadband, umMTC: ultra-

massive machine-type communications, ERLLC: extremely reliable and low-latency communications, 

LDHMC: long-distance and high-mobility communications, and ELPC: extremely low-power 

communications; corresponding use-cases and KPIs for each service type are listed in Table 1. 

Table 1 - Envisioned service types for 6G 

1 FeMBB Holographic Verticals, Full-Sensory Digital,  

Reality (VR/AR), Tactile/Haptic Internet,  

UHD/EHD Videos 

Peak Data Rate: > 1 
Tb/s 
User-Experienced Data 
rate: 1Gb/s 
Area Traffic Capacity: 
1Gps/m2 

SE: 5-10 A 

2 umMTC IoE,   

Smart City/Home 

Latency: 10-100 us 
Connectivity Density: 
107 d/km2 
EE: 10-100 A 

3 ERLLC Fully Automated Driving,  Industrial Internet Latency: 10-100 us 
Mobility: > 1000 km/h 
Connectivity Density: 
107 d/km2 

4 LDHMC Deep-Sea Sightseeing,   Space Travel,  Hyper HSR Mobility: > 1000 km/h 
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5 ELPC Nanodevices, Nanorobots, Nanosensors,   

e-Health 

Connectivity Density: 
107 d/km2 
EE: 10-100 A 

 

The number of agents at the high-level part is relative to multiple criteria, including how many 

tenants at the same time should be supported, in addition to the number of service types and their 

popularity in the network. This is because each agent receives one request in every longer time slot, thus, 

the total received requests equals the number of agents. In the following, we consider 5 agents in the MARL 

set to estimate equal requests for each service type in every longer time slot. In this way, we predict 

approximately one request for each service type. However, this number can change in case of having more 

service types or more number of users. The observation of each agent includes a request in addition to 

available service types. The request can be just one or a combination of defined KPIs, as reported in Table 

I. For example, a request can correspond to a latency requirement of 10-100 µs, meaning the agent can 

assign one of umMTC or ERLLC. Following the goal of maximizing the use of network capacity, the agent 

will make an optimal choice that gives a better result in cooperation with other agents' requests and 

decisions. Each agent tries to find the proper slice type according to the request. This means that no 

assignment will happen if the resources for the requested slice type are unavailable in the system. As a 

result, if agents assign the proper slice type or wait in case of no availability, they will receive their individual 

rewards. However, the general joint goal is to maximize the use of available resources and thus maximize 

the network capacity. Consequently, the final reward of this level is a combination of each agent’s reward 

and the reward the team receives based on how much resource have been assigned at the end of the long 

time slot. We consider the higher ratio of the final reward for the joint goal to encourage allocating more 

resources while guiding the agents to make decisions. Accordingly, The high-level reward is calculated as 

follows: 

𝑅𝑡𝑜𝑡−𝑎𝑔𝑒𝑛𝑡𝑖 =
1

3
∗ 𝑅𝑎𝑔𝑒𝑛𝑡𝑖 +

2

3
∗ 𝑅𝑡𝑒𝑎𝑚            (1) 

in which 𝑅𝑎𝑔𝑒𝑛𝑡𝑖  is equal to 1 if the assigned resources are available. Otherwise, the agent's individual 

reward is 0. 𝑅𝑡𝑒𝑎𝑚, on the other hand, is the ratio of resources in-use to all resources, which means more 

resources in-use result in a better reward. The considered ratio is the final decision of various trials with 

different ratios. 

One of the main problems in multi-agent settings is the exponential growth of joint action spaces 

with the number of agents. To overcome this complexity, we consider the QMIX algorithm [2] for our MARL 

setting, which lies between fully centralized and independent MARL. This means the algorithm learns 

decentralized policies in a centralized fashion and represents complex centralized action-value functions in 

a factored manner. Moreover, it does not require on-policy learning and, thus, remains practical even when 

deploying more agents [3]. It is worth mentioning that fully cooperative MARL is an active area of research. 

Still, there is a challenge of providing centralized training for agents to find optimum global policy while 

ensuring decentralized execution. QMIX is similar to Value Decomposition Networks (VDNs) [4] since they 

both can learn a centralized but factored Q.total-value by representing the Q.total-value as the sum of 

individual value functions that condition only on individual observations and actions. Thus, VDN also lies 

between independent Q-Learning and centralized Q-Learning, but in QMIX, the full factorization of VDN is 

not needed to extract decentralized but fully consistent policies. QMIX is made of agents´networks 

producing each agents´ Q-value and a mixing network that combines them in a complex, non-linear way to 

ensure consistency between centralized and decentralized policies. It is worth emphasising that this MARL 

differs from FRL, which involves training a ML model across multiple decentralized edge devices. In this 

MARL set, multiple agents interact with a common environment simultaneously, so the existence of other 

agents affects the environment of each agent continuously. Also, the considered algorithm is cooperative 

but does not need a joint action space. Instead, each agent has a network producing a Q-value and a mixing 
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network that receives the Q-values and produces the team Q-value. Later, the team Q-value can be 

presented with each agent's Q-value again. Thus, The chosen team Q-value produces the individual Q-

values that produced that highest value. This will be mapped to the related slice type. 

Low-level Part: While at the high-level part the multi-agent set tries to maximize the network 

capacity by choosing proper slice types to the requests, the agents in the low-level part are responsible for 

providing the QoS of each slice by assigning the resource blocks during that longer time step. To achieve 

this objective, every agent tries allocating available resource blocks in shorter time steps. In other words, 

by defining a proper action space low limit and high limit, the agent will apply the assignment so that all 

KPIs defining that slice are in the proper range. Each single agent receives its local reward since at this level 

agents act independently. The local reward starts from zero and the highest amount is when all predefined 

KPIs are in their proper range. Meaning, the local reward starts from zero, and increases with every KPI 

being in the desired range. 

Considering the complexity of assigning resource blocks in this architecture, the best way to address 

this difficulty is to use learning agents inspired by the psychology of human learning. DQL, as a model-free 

off-policy DRL algorithm that uses both Experience Replay and Network Cloning, has shown good sample 

efficiency and stable performance [5]. Since the DQL agent can collect information and train its policy in 

the background, the learned policy stored in the neural network can be easily transferred to the situations 

[6]. 

The benefits of DQL aside, our high-level algorithm is a Q-based algorithm with replay memory. Since 

the execution level is in a nested structure, having the same nature and procedure at both levels decreases 

the possibility of inconsistencies and improves the harmony of the general performance. DQL uses a 

discrete action space, which is improper for most real-world problems. To have a compatible method with 

our continuous action space in the low-level part, we use DQL with the help of Normalized Advantage 

Function (NAF DQL) [7]. NAF DQL is DQL compatible with continuous action space environments. While in 

regular DQNs, the output demonstrates all possible actions, and later, the highest value is chosen, in NAF, 

the neural network estimates the value function and the Advantage. Combining two streams produces the 

Q-value, and then the argmax is taken. According to [7], NAF DQL outperforms DDPG in solving the majority 

of tasks. Having all the benefits of Q-learning and its superior performance in problems with continuous 

action space assures that NAF DQL is a compatible algorithm for the low-level part.  

The selected algorithms in both levels benefit from the experience replay mechanism, which refers 

to the case where experiences are stored in replay memories. At the high-level part, Q.tot-values in the 

memory help agents select the best service types based on previous similar states and observations. At the 

low-level part, each experience in the memory helps agents to know the best sequence of assigning actions 

to realize that service type. 

 

2.3 Simulation Details and Numerical Results 

In this section, we evaluate the proposed solution through numerical simulations. These simulations 

use Python 3.9 with PyTorch and PyTorch Lightening libraries. Py-Charm IDE, the Anaconda platform, and 

Google Colab have been used for coding. Since each level of the proposed scheme has access to different 

representations of the network, two different environments have been developed with the help of OpenAI 

gym. The environment for the high-level part interacts with the QMIX algorithm, and the environment for 

the low-level part interacts with single agents using NAF DQL [2], [7]. This simulation does not implement 

all structures of the O-RAN. We consider O-RAN as an enabling technology for 6G networks to be able to 

use our RL-based approach in the RICs. instead, each environment simulates the data that algorithms 

receive from interacting with an envisioned 6G network. Having CF mMIMO makes the environment have 

RUs and DUs that can be assigned to multiple users as long as they do not share one resource block with 

multiple users.  



                 
  

12 
 

H2020-MSCA-ITN-2019-GA861165 

D4.3: Performance evaluation of automated network control and proof-of-concept 

  

H2020-MSCA-ITN-2019  

861165 - SEMANTIC    

H2020-MSCA-ITN-2019  

861165 - SEMANTIC 

It is worth mentioning that this simulation is one implementation of the general idea proposed in 

this paper. The environments and algorithms can be changed or improved. 

In our simulation, in the high-level part, as mentioned in Section III, the state space consists of the 

general information of the network status, which are the service types as a group of KPIs mentioned in 

Table 1. At the same time, the observation of each agent includes a request. Without loss of generality, 

each request asks only for one KPI in our simulation. So sates and observations are represented as: 

𝑠𝑡𝑎𝑡𝑒 𝑠𝑝𝑎𝑐𝑒 = {𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑦𝑝𝑒𝑠}       (2) 

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒 = {𝑟𝑖, (𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑦𝑝𝑒𝑠)}    (3) 

in which Service types are sets of KPIs and 𝑟𝑖 is also one KPI. 

 Action is choosing one of the predefined service types, which is a discrete number between 0 and 4. 

The next state is all the KPIs affected by removing the chosen service type and its related resources. Since 

the reward system was discussed in Section III, we avoid it here and follow this section with the last 

remaining element of the 4-tuple Markov Decision Process 𝑃𝑎(𝑆, 𝑆), which is the probability that action a 

in state S at time t will lead to state S´ at time t+1. Similar to most reinforcement learning cases, it is 

challenging to represent the transition probability distributions; instead, an episodic simulator can be used. 

As a result, both levels of this simulation benefit from episodic environment simulators that can be started 

from an initial state and yield a subsequent state and reward every time they receive an action input.  

There exist five agents in our simulation; each one´s network produces a Q-value regarding the slice 

type it chooses for the request received in its observation. According to the QMIX algorithm, the Q-values 

will be fed to the mixing network. The weights and biases of the mixing network are produced by hyper-

networks, which use the state and generate the layers. Since the weights should be non-negative, the 

leaner layer is followed by an absolute activation function. The final bias is also followed by a ReLU non-

linearity. The mixing network and each agent´s network have been created according to [2]. 

After running a set of random trials, we chose the set of values 0.00001, 0.90, and 0.70 for learning 

rate, gamma, and epsilon which gave us the best training result. In the training phase, every episode 

consists of 4 cycles, each ending whenever all the resources are in use, and no free resource is available. 

The stored experience at this level consists of current and next observations and states, in addition to 

actions and rewards. Figure 4 illustrates the loss and reward plots of the multi-agent set in a 7500-episode 

run. The loss plot converged after around 5000 episodes, though. The descending loss plot and ascending 

reward plot show that our ML algorithm works properly in the simulated environment. In addition, the 

reward plot's importance comes from the fact that this level's reward system presents both agent and team 

rewards. The general goal for the mixing network is to maximize the number of assignments, which means 

each assignment should be optimal so that more users are served. Thus, the ascending plot shows the 

assigned resources corresponding to the network capacity increase. As mentioned before, increasing the 

number of accepted assignments means increasing network capacity in this research work. It should be 

noted that in this simulation if the requests repeat asking for the same service type, which can be 

unavailable after a while, agents will receive their rewards for not assigning the wrong slice type. Still, the 

total reward may decrease since there are no free resources. This explains the multiple rises and falls of 

the reward in Figure 4. The red linear trend-line has an increasing pattern, though. 
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Figure 4 - Loss and Reward at the high-level part. 

While the MARL algorithm at the high-level part selects the slice types in longer time steps, at the 

low-level part, the environment provides information related to resources that can be assigned. The state 

and observation spaces are the same at the beginning of each episode and present continuous values 

representing accessible resource blocks. Each agent has access to a limited number of resource blocks. The 

resources accessed by each agent are the ones located closer to the user. Contrary to the first level, action 

space is continuous and consists of eight (equal to the number of KPIs) positive and negative numbers. each 

array of actions changes the state values until each value is in the proper range for the service type. Similar 

to the first environment, at this level, the environment will produce the next state according to the input 

action and its effects on the available resources. Using the proper action space limits after multiple trials, 

and checking constraints in the reward system assign the optimum amount of resources to each request. 

In other words, since the high-level part monitors the availability and makes decisions, and the execution 

is decentralized by single agents at the low-level part, the agents will not just guarantee a lower limit but 

also an upper limit. Thus, as defined in the reward system of the low-level part environment, for an agent 

to receive its reward, the KPIs should be between a maximum and a minimum level.  

In our simulation, all single agents are the same, but each one is trained to realized one of service 

types. In the training phase, each episode consists of a maximum of 4 steps. At the beginning of the training 

process, in the trade-off between exploration and exploitation, each agent mostly uses random actions to 

explore and sample more data. Thus, the value of epsilon starts from 1 and reduces over passing epochs 

until the agent mostly uses Q-values to take actions from replay memory. Each experience in the replay 

memory consists of the current and next observation, action, and reward. In order to do that, we reduce 

the initial random sample probability to over $100$ epochs. In other words, in the  training-epoch-end 

method of PyTorch Lightening, epsilon will be chosen according to the: 

max {𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑀𝑖𝑛, 𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑆𝑡𝑎𝑟𝑡 −
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑝𝑜𝑐ℎ

100
}      (4) 

Based on (4), the random sampling probability will start at its highest value and decrease during 100 

epochs until it reaches the minimum value considered for epsilon. We used the Optuna library along with 

PyTorch Lightening to perform 20 trials to find the best value for learning rate (0.00015193) and gamma 

(0.011332). 

Using the aforementioned values of learning rate and gamma, Figure 5 shows the Loss plots for all 

five single agents in 24000 epochs, each learning to realize one slice type. At the beginning of training, the 
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plots for each service type increase due to taking random actions. However, as the training continues, after 

approximately 2000 epochs, the loss for each agent starts a descending pattern, and finally, after 6000 

episodes, all plots converge to the minimum amount. 

 

Figure 5 - Losses at low-level part 

By jointly considering Figures 4 and 5, we notice that both levels' training processes have succeeded. 

However, since our proposed ML techniques works in a network environment, we need to ensure that the 

agents can manage and allocate network resources in the system. Due to the fact that there are no similar 

research works in the literature to use as the baseline and compare the results, we used the trained model 

in the same interactive environment to test some KPIs and their value. This test monitors three of the 

network KPIs in 1000 episodes to assure that KPIs are kept in the predefined range by the agents. If so, the 

purpose of this work has been fulfilled. As the system level and user-experienced data rates are the two 

critical KPIs in the FeMMB service type, we chose these two KPIs to monitor in the environment using the 

trained agents. In addition, latency was observed as a critical KPI in the ERLLC service type. According to 

Figure 6, the system peak data rate has been kept at more than 1 Tbps in all 1000 episodes. Based on the 

user-experienced data rate, a minimum of 1 Gbps data rate has been provided. The uniform distribution 

without having any sparse large value among the numerical results show that the upper limitations to 

control unnecessary assignments in the decentralized part have guaranteed the optimal assignments. 

Finally, Figure 6 shows that latency in the ERLLC service type is less than 10 µs in all episodes, confirming 

the success of both levels' agents' performance. Having the desired value for the network KPIs, as shown 

in Figure 6, affirms that agents in both levels perform the expected duties, and the overall solution works 

smoothly and can be a promising technique for the 6G complex system model. 

 

Figure 6 - Network KPIs: (a) Peak data rate, (b) User-experienced data rate, (c) Latency 

 

2.4 Conclusions and Future work 

The intelligent information society and emerging applications in the early future demand the next 

generation of wireless networks to overcome current limitations and provide different quality and service 

levels. New technologies that introduce openness, flexibility, and intelligence to the network are needed 

to address these demands. This paper first details candidate technologies for 6G system models such as O-

RAN and then proposes a two-level DRL-based network slicing and resource assignment, which is 

compatible with these new system models and aims to maximize the network capacity while providing QoS 
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of each service type. The proposed scheme benefits from imitating human teamwork and offers the 

flexibility and intelligence of agents that can observe, learn, and take actions online. Having two levels of 

performance and time not only facilitates optimal assignments but also helps the complex nature of the 

problem to become practical and scalable. Moreover, to study the performance of the scheme, Deep ML 

algorithms are proposed for the 6G environment at both levels and implementation details are discussed. 

The choice of algorithms at each level has been based on compatibility and complexity concerns. Since this 

work has considered a new system model, the compatible environment was simulated using the OpenAI 

Gym library; the general idea of managing the slices and assigning resources can be used with other proper 

algorithms and network environments. 

Even though one of the objectives of this approach is to address the complex problem of network 

slicing and resource management in a system model consisting of CF in RAN, in this research work, low-

level agents only try to provide the required KPIs by assigning resource blocks. On the other hand, KPIs such 

as mobility and latency are affected significantly by communication links and physical layer-related 

management. The lower part can be improved to consider both communication links and resources, in 

addition to creating clusters for users in the CF RAN. Moreover, in our current simulations, each agent is 

trained for one service type. Having agents that can be trained for all types can robust the management. 

Adopting other algorithms to each level and simulating different environments may result in exciting 

results. 

 

3 Framework: Clustering-Driven Approach for Base Station 

Parameter Optimization and Automation (CeDA-BatOp) 

The relentless growth of mobile data traffic and the rapid evolution of mobile communication 

technologies have imposed immense pressure on network infrastructure. Base station parameters, the 

cornerstone of network performance, demand meticulous optimization and management to ensure 

efficient and reliable operation [8]. Traditional methods for optimizing base station parameters are often 

manual, time-consuming, and prone to errors, necessitating the development of novel machine learning-

based approaches that can automate and optimize base station parameter management [9]. 

This comprehensive analysis delves into two proposed novel methodologies for optimizing and 

managing base station parameters in mobile communication networks: CEDA-BatOp and CEDA-BatOp 2.0. 

These methodologies introduce innovative machine learning techniques to optimize base station 

parameters and address parameter drift, paving the way for more efficient and reliable mobile 

communication networks. 

The contribution section outlines the substantial advancements and novel contributions brought forth 

by the research endeavor. At its core, this work introduces a comprehensive framework designed for base 

station parameter optimization in cellular networks. It presents a pioneering approach that amalgamates 

machine learning methodologies, specifically clustering techniques, with the aim of enhancing network 

performance. The key contribution lies in the development of a versatile and adaptable framework capable 

of optimizing base station parameters across diverse network scenarios. By addressing the limitations 

observed in existing solutions, particularly their applicability to specific network problems or settings, this 

framework emerges as a solution offering broader applicability. The intricate details of this framework, 

involving a three-stage process encompassing training, fine-tuning, and drift monitoring, establish a 

methodical and efficient approach towards optimizing base station parameters. The framework's capacity 

to adapt to varying parameter types and different network conditions underscores its versatility. 

Additionally, the study delves into drift monitoring within cellular networks, a facet relatively 

underexplored. By integrating mechanisms to detect and address data drift, the framework ensures the 

adaptability and robustness necessary for optimal network operation. Overall, the significant contribution 
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lies in not only devising a comprehensive optimization framework but also in extending its scope towards 

addressing pertinent issues like data drift, thus marking a substantial advancement in network optimization 

and adaptability. 

 

Figure 7 - Base station Parameter Optimization and Automation Framework 

The framework is structured into three key stages, each contributing to the overarching optimization 

process. 

Stage 1 (Training and Clustering): The initial phase involves training a base model (M∗1) on the 

offline dataset D1 and clustering base stations in parallel. Clustering, performed via pairwise constrained 

clustering techniques, aims to create data clusters (C11...CN1) for the initial iteration. Models (M11...MN1) 

are then created for each cluster by cloning the pre-trained base model. This stage establishes a baseline 

for comparison and prepares for subsequent retraining cycles. Retraining involves obtaining new models 

(M1i...MNi) by training the pre-trained models on updated datasets (Di) obtained from UEs, concurrently 

with base station clustering based on the new data. 

Stage 2 (Fine-Tuning and Prediction): Post Stage 1, the data clusters (C1i...CNi) from each iteration 

undergo fine-tuning to optimize their respective pre-trained models (M1i...MNi). The fine-tuned models 

are then deployed to infer base station parameters via the xApp [10], contributing to enhanced accuracy 

and specialized predictions tailored to each cluster. 

Stage 3 (Drift Monitoring and Retraining): Continual monitoring of base station data for data drift is 

pivotal in maintaining model accuracy. In the event of detected drift, the framework initiates the retraining 

process using new UE data (oi) while assuming base station labels are obtainable from a lookup table. This 

proactive approach, requiring minimal human intervention, ensures adaptive model updates in response 

to changing network conditions. 

The left and right dotted lines in the framework diagram delineate components deployable in Service 

Management & Orchestrator (SMO) and Near-RT RIC, respectively. This modular setup enables efficient 

deployment and integration of the framework components into network management systems, facilitating 

seamless optimization and automation in cellular networks. 
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Figure 8 - Map of a simulated locality in Madrid 

Simulation Setup: The simulation commenced with the creation of an initial dataset employing a 

dynamic system level simulator replicating a Madrid locality scenario. This simulation encompassed 42 base 

stations mirroring an urban environment—a mix of macro cells with directional antennas and small cells 

equipped with Omni-antennas. The scenario incorporated diverse user mobility patterns, involving UEs 

moving at varying speeds (200 UEs at 30 km/hr, 40 UEs at 3 km/hr, and 80 UEs at 3 km/hr). The dataset 

encompassed an array of UE parameters, including RSRQ, RSRP, RSSI, SINR, CQI, DL/UL bitrate, along with 

parameters from neighboring base stations. Similarly, optimized base station parameters such as antenna 

tilt, azimuth, and maximum transmission power were part of this comprehensive dataset. This diverse 

setup was designed to reflect realistic urban scenarios and offer a robust foundation for evaluating base 

station-specific machine learning models. 

Discussion and Result: The evaluation process involved a wide array of machine learning models, 

ranging from traditional approaches like SVM Regressor, SGDRegressor, to more advanced techniques such 

as Gaussian Process Regression (GPR) and Feedforward Neural Networks (FCNN) of varying depths. The aim 

was to optimize these models for base station parameter prediction. A meticulous hyperparameter tuning 

phase ensued, aiming to fine-tune these models to the complexities inherent in the dataset. Metrics such 

as Root Mean Square Error (RMSE), total training time, and storage requirements were analyzed to 

comprehensively understand each model's performance in optimizing base station parameters. 

Table 2 - Comparison of clustering algorithms (K-means, DB-SCAN, AHC) 
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Table 3 - Performance of models when trained on the overall dataset without fine-tuning 

 

 

Table 4 - Performance of models when trained on the overall dataset with fine-tuning 

 

 

Table 5 - Performance of FCNN - 5 layers (12,25,12,10) average of 42 models 

 

 

Table 6 - For data moved by up to ±5 
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Table 7 - For data moved by up to ±10 

 

The outcomes showcased the GPR model employing the Exponentiation of RationalQuadratic() 

kernel as the most efficient, delivering the lowest average RMSE among all models. FCNN models displayed 

a progressive increase in predictive accuracy as the number of layers increased, albeit with trade-offs in 

training time and storage requirements. Furthermore, an investigation into individual models for each base 

station revealed enhanced predictive capability at the expense of increased storage demands, highlighting 

the potential for improved accuracy by tailoring models to specific base stations. 

The section concluded by underscoring the effectiveness of the clustering-driven approach, which 

facilitated improved network optimization and a substantial reduction in memory overhead. The drift 

monitoring system's robustness was also highlighted, crucial for maintaining accurate predictions amidst 

dynamic network conditions. Overall, the results emphasized the potential and versatility of the framework 

in optimizing cellular networks, with future directions focused on innovations like pseudo labeling and 

exploration of applications beyond optimization to address network disruptions and adapt to evolving 

traffic patterns. 

 

3.1 CeDA-BatOp 2.0: Enhanced Framework for Base Station Parameter Optimization 

and Automation with Joint Optimization, Controlled Drift Analysis and Pseudo-

Labeling 

The contributions of CeDA-BatOp 2.0 mark a significant advancement in the realm of base station 

clustering and parameter optimization, presenting a trio of pioneering enhancements over its predecessor, 

CeDA-BatOp 1.0. Foremost among these innovations is the introduction of a cutting-edge Multi-Task 

Learning (MTL) methodology. This groundbreaking approach revolutionizes the training process by 

concurrently harnessing the power of the base station parameter predictor (FCNN-5) and the clustering 

task (AHC) through a shared encoder architecture. This joint training strategy leads to superior performance 

metrics, evidenced by substantial improvements in clustering precision and prediction accuracy when 

compared to traditional independent training methods. 

A second pivotal contribution lies in the meticulous exploration of controlled drift phenomena within 

the dataset domain. CeDA-BatOp 2.0 pioneers a comprehensive analysis of drift dynamics utilizing Gaussian 

Mixture Models (GMMs) . By deliberately introducing controlled noise into the dataset and observing the 

system's response, this framework offers invaluable insights into the robustness and adaptability of its drift 

detection mechanisms. This intricate examination unravels the framework's ability to discern subtle 

variations and adapt to changing data distributions, a critical feature for real-world network data 

management. 
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The third major stride forward is the introduction of an innovative Pseudo-Labeling Strategy 

employing Multi-View Co-Training (MVCT) [11]. This groundbreaking approach harnesses the distinct 

perspectives offered by two disparate algorithms, FCNN-5 and HGBoost, to generate informative pseudo 

labels for unlabeled data. By leveraging the complementary insights from these models, the MVCT 

technique significantly enhances the retraining process, reducing error rates and refining predictions. This 

novel strategy showcases the potency of amalgamating insights from multiple models to amplify overall 

performance. 

Collectively, these contributions underscore CeDA-BatOp 2.0 as a groundbreaking evolution in 

network infrastructure management. This framework not only addresses critical challenges in cellular 

network optimization but also promises to substantially enhance network performance and user 

experience in urban settings. Future explorations are poised to delve deeper into reinforcement learning 

techniques for heightened network management and the development of intelligent weighting systems to 

further enhance predictions derived from multiple perspectives within the MVCT pseudo-labeling system. 

In essence, CeDA-BatOp 2.0 heralds a new era in cellular network management, offering an adaptive, 

efficient, and cutting-edge framework for dynamic network optimization. 

 

Figure 9 - Base station Parameter Optimization and Automation Framework 

The CeDA-BatOp 2.0 framework embodies a pioneering approach to base station clustering and 

parameter optimization, comprising a meticulously structured methodology that encompasses distinct 

stages. This multifaceted framework commences with the creation of an offline dataset (D1) meticulously 

generated using an in-house simulator and comprising User Equipments (UEs) and base station parameters. 

Acting as the foundational input and output for the Machine Learning (ML) model, this dataset forms the 

cornerstone of subsequent stages. The framework delineates four primary stages, commencing with 

Stage 1 (Joint Training of Parameter Predictor and Clustering): This phase leverages a shared 

encoder architecture that unifies the base station parameter predictor (FCNN-5 layers) and the 

Agglomerative Hierarchical Clustering (AHC) task. The joint training process integrates individual task losses 

via a methodology inspired by previous works. This strategic fusion not only facilitates the collective 

learning of features beneficial for all tasks but also enables task-specific adaptations, optimizing the model's 

overall performance. 

Stage 2 (Fine-tuning and Prediction): capitalizes on the cluster information garnered from joint 

training (C1i to CNi). Here, the pre-trained models undergo a fine-tuning process, refining the models for 

specific clusters to enhance predictive accuracy. The resulting fine-tuned models are subsequently 

deployed as xApps, enabling the inference of optimized base station parameters. 
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Stage 3 (Controlled Drift Analysis and Monitoring): where data acquisition from UEs undergoes 

continuous monitoring to detect data drift. The framework employs a controlled drift study, employing 

Gaussian Mixture Models (GMMs) to simulate drift phenomena and meticulously assess its implications 

within the dataset domain. This stage is pivotal in elucidating the system's adaptability to changing data 

distributions [12]. 

Stage 4 (encompasses Pseudo-Label Generation for Retraining): an innovative strategy that utilizes 

Multi-View Co-Training (MVCT). Employing two views—FCNN-5 and HGBoost—the framework harnesses 

distinct perspectives to generate pseudo labels for unlabeled data. This collaborative approach between 

models streamlines the retraining process, enhancing model robustness and accuracy. 

Collectively, these stages form a comprehensive framework, setting the stage for CeDA-BatOp 2.0 as 

an adaptive, efficient, and innovative system. Each phase plays a crucial role in shaping the framework's 

capabilities, enabling it to address real-world network challenges, and continually adapt to the dynamic 

nature of cellular network data. 

Simulation setup, discussion, and results: This section presents an extensive overview of the 

carefully curated simulated dataset and the subsequent analyses conducted within the CeDA-BatOp 2.0 

framework. Leveraging a proprietary dynamic system-level simulator, the framework employed a 

meticulously crafted dataset comprising 42 strategically positioned base stations, meticulously mirroring 

an urban setting in Madrid. This dataset encapsulated a diverse array of base station configurations, 

including macro cells with directional antennas and small cells utilizing Omni-antennas. Simulated mobility 

patterns of User Equipments (UEs) further enriched the dataset, incorporating varying speeds across 200 

UEs at 30 km/hr, 40 UEs at 3 km/hr, and 80 UEs at 3 km/hr. This diversity aimed to simulate  realistic 

mobility scenarios, enabling the Machine Learning (ML) model to adapt to a spectrum of user behaviors 

and network configurations. 

The dataset itself was a rich repository of UE parameters and optimized base station configurations, 

encompassing parameters such as Reference Signal Received Quality (RSRQ), Reference Signal Received 

Power (RSRP), Signal-to-interference-plus-noise ratio (SINR), and base station parameters like Antenna tilt, 

Antenna azimuth, and Maximum Transmission power. Comprising a vast array of input features at the UE 

end and output features at the base station end, this dataset laid the foundation for robust analysis within 

the CeDA-BatOp 2.0 framework. 

 

Figure 10 - Joint Training of FCNN-5 and AHC along with the shared encoder 
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Figure 11 - Multi-View Co-training: FCNN-5 as view 1 and HGBoost as view 2 

The study investigated the framework's efficacy across various stages. Stage 1 involved joint training 

of the base station parameter predictor and clustering tasks, demonstrating improved performance in both 

clustering and prediction tasks compared to the previous version, CeDA-BatOp 1.0 [13]. The discussion 

elaborated on the efficacy of the joint training approach, emphasizing the model's ability to collectively 

achieve superior solutions by integrating losses from individual tasks. 

Furthermore, Stage 2 involved fine-tuning the models based on the clusters obtained in the joint 

training phase. This stage highlighted significant reductions in Root Mean Square Error (RMSE), showcasing 

enhanced prediction accuracy, particularly in scenarios where the pre-trained models underwent fine-

tuning, signifying the pivotal role of fine-tuning in optimizing predictions for specific clusters. 

Additionally, the section detailed the exploration of controlled drift analysis utilizing Gaussian 

Mixture Models (GMMs). Through meticulous drift experiments, the study assessed the framework's ability 

to detect and adapt to drift phenomena within the dataset. The discussion emphasized the challenges faced 

in identifying subtle drift instances and the framework's performance in accommodating unpredictable 

variations in real-world network data. 

Moreover, the exploration of a pseudo-labeling strategy using Multi-View Co-Training (MVCT) 

demonstrated the efficacy of generating labels for unlabeled data, significantly reducing the need for 

manual intervention and enhancing predictive accuracy. The discussion highlighted the benefits of 

leveraging distinct perspectives from FCNN-5 and HGBoost models, showcasing the potential synergy 

between models to streamline the retraining process. 

Overall, this comprehensive analysis underscored the CeDA-BatOp 2.0 framework's adaptability, 

efficiency, and robustness in addressing real-world network challenges, paving the way for an 

autonomously functioning network infrastructure. 

Table 8 - AHC Comparison for CeDa-BatOp versions 1.0 and 2.0 
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Table 9 - Performance of FCNN-5 (12,25,12,10) with initial training (without cluster fine-tuning) 

 

 

Table 10 - Performance of FCNN-5 (12,25,12,10) with initial training and cluster fine-tuning 

 

 

 

Figure 12 - Drift detection accuracy across GMMs for SNR = 166% 

 

 

Figure 13 - Drift detection accuracy across GMMs for SNR = 125% 

The conclusion of the study highlights CeDA-BatOp 2.0 as a significant advancement in the domain 

of base station clustering and parameter optimization. This updated framework introduces key 

improvements over its predecessor, CeDA-BatOp 1.0, primarily through the implementation of multi-task 

learning, controlled drift analysis, and a strategic pseudo-labeling strategy using Multi-View Co-Training 

(MVCT). The evaluation of CeDA-BatOp 2.0 on a meticulously curated simulated dataset showcased 

superior performance in both clustering and prediction tasks, with notable enhancements such as a 

Silhouette score of 0.853 and an RMSE of 12.34. The discussion emphasized the efficacy of joint training, 
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fine-tuning, and the system's adaptability to controlled data drift, showcasing its resilience in adjusting to 

ever-changing real-world network data. 

The controlled drift analysis served as a critical component, offering insights into the framework's 

ability to detect and respond to drift phenomena within the initial dataset domain. The exploration 

underscored the challenges faced in identifying subtle variations and the framework's adaptability to 

unpredictable changes, essential for dynamic network adjustments. Additionally, the integration of 

pseudo-labeling via MVCT demonstrated remarkable potential in generating accurate labels for unlabeled 

data, reducing manual intervention, and enhancing model adaptability. 

CeDA-BatOp 2.0's ability to evolve into an autonomously functioning network infrastructure stands 

as a promising achievement. Its capacity to continuously update models, respond to changing network 

conditions, and streamline the retraining process lays a robust foundation for dynamic network 

management. The conclusion also outlines avenues for future exploration, emphasizing an interest in 

reinforcement learning techniques and intelligent weighting systems to further refine predictions derived 

from the MVCT pseudo-labeling strategy. In summary, CeDA-BatOp 2.0 presents a clear trajectory toward 

establishing a more adaptive and efficient network infrastructure, promising significant advancements in 

dynamic network management and optimization. 

 

3.2 Towards Robust Anomaly Detection in User Equipment Parameters: A Deep 

Generalized Canonical Correlation Analysis approach 

This section emphasizes the significant advancements and novel contributions made through the 

proposed anomaly detection system using Deep Generalized Canonical Correlation Analysis (DGCCA) [14] 

for User Equipment (UE) parameters in mobile communication networks transitioning towards 5G. 

The core contribution lies in the development of a robust anomaly detection methodology tailored 

specifically for UE parameters. We introduce UE anomaly detection using DGCCA, an innovative extension 

amalgamating the strengths of Deep Canonical Correlation Analysis (DCCA) and Generalized Canonical 

Correlation Analysis (GCCA) [15]. This novel amalgamation offers a unique solution capable of handling 

multi-view, high-dimensional, and non-linear UE parameter data, effectively surpassing the limitations of 

traditional anomaly detection models. 

Anomaly Detection in UE Parameters Using DGCCA: This section unveils a sophisticated approach 

rooted in the concept of Canonical Correlation Analysis (CCA) [16] and its evolution into Deep Generalized 

Canonical Correlation Analysis (DGCCA) for robust anomaly detection within User Equipment (UE) 

parameters. Commencing with an exposition on CCA, its capability in identifying linearly correlated 

projections between two vectors is elucidated. However, they expound on its limitations, particularly its 

restriction to linear projections and its inability to handle correlations among more than two input features. 

This prompts the introduction of DCCA, a breakthrough approach overcoming the limitations by integrating 

stacked deep neural networks for each feature and performing CCA on the produced outputs. Despite this 

advancement, the constraint of correlating only two views persists, leading to the introduction of GCCA, a 

generalized extension allowing for shared representations among multiple views but still confined to linear 

projections. 

The innovation of DGCCA stems from amalgamating the strengths of DCCA and GCCA, supporting 

more than two views and non-linear transformations through the expressive prowess of deep neural 

networks. DGCCA's framework, initially proposed for suggesting friends and hashtags for Twitter users, 

integrates the training process where input features traverse their respective deep neural networks, and 

weights are optimized through backpropagation, aligning with the GCCA objective. The architecture for N 
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views in DGCCA is meticulously depicted, primarily based on 1D convolutions followed by convolutional 

layers, max-pooling, flattening, and feeding into a Fully Connected Neural Network (FCNN). 

 

Figure 14 - Simplified Illustration of UE Anomaly detection system for N features (N=5) 

The optimization objective of DGCCA involves obtaining a shared representation called 'G' by 

maximizing the sum of correlation between 'G' and the output of each neural network. This is achieved by 

computing top 'K' canonical correlations for every pair of networks and summing them to obtain the 

collective multicorrelation value of N views. Leveraging the correlations between pairs of features, a 

strategy using threshold values for detecting anomalies within a feature at a certain period is introduced. 

However, the strategy remains effective only when a single feature is anomalous at a given time, leaving 

the simultaneous detection of anomalies in multiple features for future exploration. In this context, the 

section meticulously discusses the determination of hyperparameters, particularly the 10 threshold values 

obtained from the validation set during training. 

The multifaceted approach culminates in the proposal of an intricate and comprehensive anomaly 

detection system tailored for UE parameters, leveraging the prowess of DGCCA and addressing the 

limitations of earlier canonical correlation methodologies. 

Evaluation and Discussion: This section delves into a meticulous assessment of the proposed 

anomaly detection system within the context of User Equipment (UE) parameters, using DGCCA, offering a 

comprehensive insight into the performance metrics, dataset particulars, model architectures, and 

comparative analysis among various machine learning algorithms. The researchers adeptly employ the 

CeDA-BatOp v1.0 simulated dataset, meticulously derived from a proprietary dynamic system level 

simulator, meticulously mirroring an urban landscape in Madrid. This dataset features a diverse array of 

base station configurations, mimicking realistic UE mobility patterns across different user scenarios with a 

variety of velocities, enriching the dataset's utility for machine learning model adaptation. 

The dataset encompasses critical UE parameters like Reference Signal Received Quality (RSRQ), 

Reference Signal Received Power (RSRP), Reference Signal Strength Indicator (RSSI), Signal-to-interference-

plus-noise ratio (SINR), and Channel Quality Indication (CQI). These parameters form the foundation for the 
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anomaly detection system's training, validation, and testing, rigorously segregated into sets ensuring 

robust model development and assessment. 

Splitting the UE parameter dataset into distinct subsets—70% for training, 15% for validation, and 

15% for testing—provides a solid foundation for comprehensive evaluation while ensuring model 

generalizability. To ensure uniformity and alleviate issues stemming from varied scaling, the data is 

standardized using PyTorch's transforms.Normalize() [17] based on calculated global mean and standard 

deviation for respective features, ensuring homogeneity across the dataset. 

The detail of the architecture and hyperparameter selection for the 1D Convolutional Neural 

Network (CNN) encoder and the Fully Connected Neural Network (FCNN) component of the anomaly 

detection system. They conducted an exhaustive hyperparameter search, optimizing hidden layers, units, 

and other critical parameters, finally selecting a configuration showcasing optimal validation accuracy 

across the FCNN layers. 

Table 11 - Architecture of 1D CNN in UE parameter Anomaly 

 

The experiment involves the introduction of random noise at varied time intervals to simulate real-

world scenarios and evaluate the anomaly detection system's performance. This deliberate introduction of 

Gaussian Noise across the features—RSRP, RSRQ, RSSI, SINR, CQI—presents a challenging yet realistic 

scenario for evaluating model robustness. 

The section provides a comprehensive comparison of various machine learning models—SVM, Naive 

Bayes, Random Forests, FCNN, and DGCCA—showcasing their accuracy and false negative rates. The 

evaluative metrics underscore DGCCA's superiority, exhibiting an outstanding accuracy of 92.23% alongside 

an exceptionally low false negative rate of 1.55%, positioning it as the optimal choice for UE parameter 

anomaly detection. 
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Table 12 - Anomaly detection of UE parameter with different 

 

  

 

Figure 15 - DGCCA Confusion Matrix 

Additionally, we explored the confusion matrix of DGCCA, shedding light on the model's exceptional 

performance in detecting anomalies within specific parameters like RSRQ while highlighting challenges in 

discerning non-anomalous instances, especially within the CQI parameter. This critical analysis lays the 

foundation for future refinements aimed at enhancing the model's capacity to accurately identify 

anomalies in intricate UE parameters. 

Firstly, we highlight the exceptional performance achieved by DGCCA, showcasing an impressive 

accuracy of 92.23% and an astoundingly low false negative rate of 1.55%. These results validate DGCCA's 

robustness in discerning anomalies within UE parameters, affirming its superiority over traditional machine 

learning models like SVM, Naive Bayes, and Random Forests, establishing it as the pinnacle choice for 

anomaly detection in this domain. 

Furthermore, we  emphasize DGCCA's pivotal role in enhancing the prediction of optimized base 

station parameters within the Open Radio Access Network (ORAN) [18] framework. By effectively 

identifying anomalies in UE parameters, DGCCA contributes significantly to network resilience, adaptability, 

and overall performance, thereby augmenting self-organizing networks' efficiency and reliability. 

The future trajectory of research in this domain, focuses on refining DGCCA's anomaly detection 

capabilities, especially within complex parameters like CQI. Themphasize the need for further exploration 

and refinement to address the challenges observed in specific parameters, ensuring DGCCA's applicability 

and accuracy across diverse network environments. 

Additionally, we emphasize the importance of scalability assessment to ascertain DGCCA's 

effectiveness in real-world scenarios. This avenue of exploration aims to validate DGCCA's utility and 



                 
  

28 
 

H2020-MSCA-ITN-2019-GA861165 

D4.3: Performance evaluation of automated network control and proof-of-concept 

  

H2020-MSCA-ITN-2019  

861165 - SEMANTIC    

H2020-MSCA-ITN-2019  

861165 - SEMANTIC 

performance across varying network landscapes, ensuring its reliability and efficacy in dynamic mobile 

communication environments. 

 

3.3 Conclusions and Future work 

In conclusion, the research demonstrates significant advancements in the domain of base station 

parameter optimization and anomaly detection within mobile communication networks. CeDA-BatOp 2.0, 

an updated framework, introduces multi-task learning, controlled drift analysis, and a strategic pseudo-

labeling strategy via Multi-View Co-Training (MVCT). Evaluated on a curated dataset, it showcased superior 

performance in clustering and prediction tasks, affirming its adaptability and resilience in dynamic network 

environments. Moreover, the Controlled Drift Analysis highlighted the framework's ability to detect and 

respond to data drift, crucial for network adaptability. The integration of MVCT's pseudo-labeling 

demonstrated potential in accurately labeling unlabeled data, reducing manual intervention, and 

enhancing adaptability. DGCCA serves as another pivotal tool, boasting exceptional anomaly detection 

accuracy and low false negative rates. Its contribution to predicting optimized base station parameters 

within the Open Radio Access Network (ORAN) framework enhances network resilience and efficiency. 

The conclusion outlines avenues for future exploration, emphasizing the refinement of anomaly 

detection capabilities, especially in complex parameters like CQI, and scalability assessment across diverse 

network landscapes. These advancements solidify DGCCA's status as a fundamental tool for optimizing self-

organizing networks in the evolving landscape of mobile communications. 

 

4 Data-driven Automation for Disturbance Management in 

Large-scaled Telecommunication Networks 

 

4.1 Introduction 

Towards developing a data driven network control and automation platform to achieve the 

SEMANTIC KPI and target value of 10-fold improvement in re allocating the resources, in Del 4.1, Telenor 

reviewed data analysis tools, monitoring systems, data sources, and possible use cases based on SoA. 

Telenor proposed the concept of self-driving and zero touch networks to describe how it intends to use 

data-driven network control and automation tools in Telenor network. To this aim, in del 4.2, we addressed 

the optimization of network performance and resource usage by developing a framework based on 

machine learning algorithms in network disturbance domain toward maximizing Telenor customer 

satisfaction and minimizing network downtime. We also presented an initial analysis of the system model’s 

performance in Del 4.2. In Del 4.3, we will give an extensive evaluation of two use cases that we addressed 

within network disturbance domain based on proposed system model and data sets from real running fixed 

and mobile Telenor network domains. 

Traditional approaches to manage networks are often time and cost-consuming and prone to errors. 

In fact, the over-time need for continuous connectivity, optimizing the user experience, and dynamic 

networks such as 5G and beyond necessitates engaging automation in network management processes. 

Automation helps adjust networks in real-time, efficiently allocate resources, and proactively identify and 

address network issues before they escalate. Furthermore, the integration of AI and ML has further pushed 

automation forward by introducing the concept of self-driving networks. Such networks can autonomously 

monitor, analyse, and optimize their performance, minimizing human intervention [19]. However, legacy 

systems in most cases, introduce practical challenges for having a fully autonomous network. In our 

context, we are dealing with a large-scaled real-running complex telecommunication (telco) network, and 
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our goal is to introduce intelligent automation to optimize the management of this network. In fact, rather 

than automating the design of the network, we aim to explore the application of data-driven approaches 

for automating the operations of network disturbances. Our goal is to fulfil this task by implementing an 

automated assistant system on top of our existing network infrastructure reality [20]. 

At Telenor, a leading telco service provider in Sweden, network disturbances and the actions taken 

to address them are stored within an internal incident handling system through Trouble Tickets (TTs). 

Telenor's NOC already employs some levels of automation for handling TTs; however, this automation is 

mainly based on the predefined rules that human experts have realized through experience over the years. 

Relying on human expertise could be challenging since it can cause errors and delays [21]. Given the vast 

historical dataset of TTs, ML techniques can provide an optimized way of automation. Nonetheless, 

challenges arise due to the heterogeneous temporal information in aggregated TTs, data availability 

limitations, etc. 

Our work addresses challenges related to automating TTs generated from fixed access switches and 

radio access base stations, in fixed and mobile network domains (We call them fixed and mobile TTs). To 

this end, we define two use cases: 1. TTs resolution time prediction 2. TTs on-site dispatch-need prediction. 

To the best of our knowledge, our work is the first to tackle the telco network TTs automation by thoroughly 

studying their evolution over time using data-driven approaches and presenting comprehensive results. 

Our study uses the Telenor TT dataset which establishes the developed models to be pragmatic and a step 

towards automation of TT resolution at Telenor and other telecom service providers with similar set up. 

 

4.2 Background 

Consumer services offered by Telenor Sweden include mobile (2.9M subscribers), broadband (700K 

subscribers) and TV (500K subscribers). Telenor owns a fixed and mobile network consisting of thousands 

of switches and radio base stations distributed over the country to provide these services. 

The fixed network receives incoming data traffic from devices connected to its ports and forwards it 

to the destination in the Local Area Network (LAN). Access switches connect the devices in LAN to the 

internet through the core IP network (Figure 16). Access switches provide services such as Voice Over IP 

(VOIP), fixed broadband, and TV (IPTV, DTV, etc.) to end users. Telenor Sweden owns approximately 35,000 

access switches across the country. A mobile network consists of radio base stations. A base station 

provides a wireless connection between mobile devices such as cell phones, tablets, and other wireless-

enabled devices within a designated coverage area, known as a cell (Figure 16). The set of cells creates a 

Radio Access Network (RAN). Almost 8,000 base station cells across Sweden belong to Telenor. 
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Figure 16 - Fixed Access Network (left), Mobile Access Network (right) 

Telenor is managing complex running networks consisting of thousands of interconnected fixed and 

mobile service-providing elements. Different types of disturbances are expected to happen in these 

complex networks. A network disturbance happens because of faults in the elements. Timely response to 

these disturbances can guarantee the smooth operation of the network. Network disturbances are 

collected in the form of TT records. All TT monitoring and management processes are performed in the 

incident handling system.  

TTs go through a journey from the moment they are created. NOC administrators work on resolving 

the TTs during this journey and make logs of their actions [22]. At each time stamp of this journey, the 

values of TT fields might change based on the information realized from the disturbance up to that moment. 

Part of a TT record is shown in figure 17. Figure 18 shows the diagram of TTs creation, handling, updating, 

and resolution over time (left) and TT evolution over time (right). 

 

Figure 17 - Part of a TT record 
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When a TT is resolved, the period it took for resolution (resolution time) and information about the 

necessity of dispatching workforce to the site (dispatch need) are recorded in separate fields in the TT 

record. Currently, the company reports 480 minutes resolution time for all TTs once they are generated 

from access switches and radio base stations [22,23]. This is an estimation based on the expertise and 

service level agreement. However, there is no estimation for the dispatch need. It is usually realized by 

monitoring the disturbance symptoms during the TT handling procedures. This could take a few minutes to 

several hours, depending on the problem. This paper investigates predicting the resolution time and 

dispatch need to facilitate NOC operations. 

 

Figure 18 - TT creation, handling, updating, and resolution (left) and TT evolution (right) 

  

4.3 Data Analysis and Predictive Models 

This study uses approximately 40,000 switch TTs and 22,000 mobile TTs. We analyze these two 

datasets separately because of their different fields and characteristics. In this study, we only consider the 

fields with structured formats, ignoring those filled with human natural language. Using regular 

expressions, we manage to mine the textual fields of the TTs and extract vital information about 

disturbances. We refer to the fields and extracted information as features of the TT. Not all features are 

available at the time of TT creation (T0). They are added or updated overtime as TTs evolve (T1, T2…). There 

are many blank fields in both datasets. To prepare data for model building, we fill out the categorical blank 

fields with a constant value and infer blank numerical fields from known parts of the data using the iterative 

imputation technique [24]. Furthermore, we encode the categorical features so that ‘1’ stands for the 

category that appears in the field and ‘0’ stands for the remaining categories. We also scale the numerical 

features between 0 and 1 to speed up the optimization process of the models' cost function. 

Figures 19 shows the histogram of the switch and mobile TTs resolution time distribution. Based on 

this figure, most TTs are resolved within 480 minutes (8 hours) of their creation. All resolved TTs in over 

1000 minutes are aggregated in the last bar. There are TTs with unusually long resolution times in both 

data sets. We consider them outliers and do not consider them in analysis. After removing the outliers and 

discussing with experts, the range of reasonable resolution time that we consider for this study is 1 to 4,320 

minutes, equivalent to 3 days. Figure 20 shows the distribution of dispatch need for switch and mobile TTs. 

In this case, the target feature is binary (Yes or No). In both data sets, almost 11% to 12% of the TTs need 

on-site work. This indicates an imbalanced distribution in the data sets for predicting dispatch needs. 

Finally, after taking all data engineering and cleaning steps, we are left with almost 39,000 switch TTs and 

21,000 mobile TTs, each having 24 and 71 different features, respectively. 
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Figure 19 - Distribution of TTs resolution time, Switch (left) Mobile (right) 

 

 

Figure 20 - Distribution of TTs’ dispatch need, switch (left), mobile (right) 

We want to build models to predict the resolution time and dispatch need for switch and mobile TTs. 

We train the models on the set of TTs' features available at the time of ticket creation; the target features 

for prediction are TTs' resolution time and TTs' dispatch need. We keep 80% of the data for training the 

models and 20% for testing their performance on unseen data. Since the target feature is continuous, we 

use ML regression models in the resolution time prediction. The regression models that we used for this 

prediction are as follows: 

• Linear Regression (LR) [25] 

• K Nearest Neighbour (KNN) [26] 

• Decision Tree (DT) [27] 

• Random Forests (RF) [28] 

• Extreme Gradient Boosting (XGB) [29] 

• Neural Network (NN) [34] 

We use 3-fold cross-validation and Bayesian search CV [30] for tuning the hyper-parameters and 

optimizing the results on Mean Absolute Error (MAE) metrics. Using Bayesian search CV, we can efficiently 

explore the search space of the parameters. To find the best parameter set, we iterate on the parameter 

space of each model 100 times. Table 13 shows the parameter space we consider for each model. 
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Table 13 - Regressors’ parameter space 

Model Parameter space 

KNN n_neighbors: [2,15] 

LR fit_intercept:[True, False] 

DT max_depth:[10,800], 

max_features:[0.5,1] 

RF max_depth:[1,100], 

n_estimators:[100,1000], 

max_features:[0.5,1], 

max_samples: [0.5,0.99], 

bootstrap:[True,False] 

XGB learning_rate: [0.01,0.1], 

max_depth: [1,100], 

n_estimators: [100,1000], 

colsample_bytree: [0.5,1] 

subsample: [0.5,1] 

NN nodes:(64,128,256), 

batch_size: (4,8,32,64), 

optimizer: (rmsprop, adam, 

nadam, sgd), 

activation_func:(relu, tanh, 

relu) 

 

In the case of dispatch need prediction, we apply ML classification models. The classifiers that we used 

for this task are as follows: 

• Logistic Regression (LR) 

• Random Forest (RF) 

• Extreme Gradient Boosting (XGB) 

Five-fold cross-validation and randomized search CV [31] are used to optimize the results on the Area 

Under the Curve (AUC) score. Five different metrics, namely F1 score, precision, recall, False Positive (FP), 

and False Negative (FN) percentages, are reported for this task. Table 14 shows the parameter space we 

consider for each model. 
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Table 14 - Classifiers’ parameter space 

Model Parameter space 

LR C:{10−4,10−3,10−2,10−1,10,101,102,103,104}, 

Penalty:{l1, l2} 

RF max_depth: [2, 14], 

n_estimators:{100, 200, 300, 400, 500, 

600, 700, 800, 900, 1000}, 

min_samples_split:[2,12], 

max_samples_leaf: [1, 11] 

XGB learning_rate: {0.007, 0.008, 0.009, 

0.01, 0.02, 0.03}, 

max_depth: [3,12], 

n_estimators:{100, 200, 300, 400, 500, 

600, 700, 800, 900, 1000}, 

colsample_bytree: {0.1, 0.3, 0.5, 1} 

subsample: {0.1, 0.3, 0.5, 1} 

KNN considers the distances in space to learn the similarity (feature-wise) among samples [32]. LR in 

regression and classification cases is designed to find the linear relationship between independent and 

target features [33]. Tree-based models also tend to find the non-linearity by building one or multiple 

decision trees. In DT, only one tree-like model of decisions is used to predict the target [32]. On the other 

hand, RT and XGB are ensemble models, combining the results of multiple decision trees to reach a more 

potent effect. They are different in the way they build and combine the trees. In RF, a technique called 

bagging is used to create decision trees; however, in XBG, the gradient boosting algorithm over an objective 

function is leveraged to model the process [32]. Relationships in NN are learned using neurons and the 

connections among them [34]. 

 

4.4 Numerical Evaluation 

First, we build the models based on all information available at the creation time of TTs (T0). We do 

this to inform NOC administrators and customers about the probable time ranges within which the 

disturbances will be resolved. In switch TTs, the disturbance information is updated over time. In mobile 

TTs, the way the data is collected about disturbances differs from switch TTs, and there is no such updating 

of information over time. We train the models on the train set and evaluated them on the test set after 

tuning their parameters. Figure 21 shows the models' MAE results on switch and mobile train, validation, 

and test sets at T0. For switch TTs, all models perform better than the company baseline with MAE of 430 

minutes on the test set. LR and KNN with MAE of almost 240 minutes on the test set show weak 

performance in predicting the target. Instead, tree-based models such as DT, RF, XGB, and NN have good 

performance for this prediction. XGB and NN with MAE of around 85 minutes on the test set perform almost 

the same, outperforming other models. This indicates the non-linearity relation among the switch TTs 

features. For mobile TTs, all models perform better than the baseline (MAE around 480 minutes on test). 
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KNN perform better than LR and DT. This shows that there is a similar pattern among mobile TTs. DT among 

tree-based algorithms has the worst performance. This is probably because of a low number of model 

parameters used by this algorithm for finding the non-linearity in data. XGB and NN, with MAE of almost 

185 minutes on test, perform the best among other algorithms. 

 

Figure 21 - MAE comparison for resolution time prediction of TTs, (a) Switch, (b) Mobile 

Based on the results from switch and mobile TTs, we can draw several conclusions. First, in both 

systems, there is enough non linearity in the relationship between TT features and the two targets 

(resolution time and dispatch need) that cannot easily captured by simple models. That is why non-linear 

models such as NN and XGB show better predictive performance (lower MAE). Second, various 

characteristics of access switch and radio base station disturbances which are reflected in both data sets 

results in different predictive performance of the models. Third, we have improved the MAEs compared to 

company baseline by 80% for switch TTs and 61% for mobile TTs. This is a proof of concept for usefulness 

of these predictive models in assisting NOC personnel in their daily disturbance handing processes. Tables 

15 and 16 show the results of dispatch need prediction on switch and mobile TT test sets at T0. For switch 

TTs, XGB achieves the best results by predicting 22.39% of the cases that need dispatch (‘Yes’ label) with a 

precision of 80.37% and predicting 99.22% of the cases that do not need dispatch (‘No’ label) with a 

precision of 89.96% (Recall score indicates the percentage of true positives) and average macro F1 score of 

65%. Although LR has the highest recall score of ‘No’ labels and the lowest FP percentage, it does not 

perform well in predicting ‘Yes’ cases, thus acting like a random model, classifying all samples as not 

needing dispatch. On the other hand, all models can predict ‘Yes’ cases for the mobile TTs. Among them, 

again, XGB is the best model by predicting the TTs that need dispatch in 34.46% of the instances and TTs 

that do not need dispatch in 97.73% of the cases with the precision of, respectively, 65.20% and 92.35% 

and macro average F1 score of 70%. 

Table 15 - percentage of metrics on switch test set 

Model ND PR RCL F1 AUC FP FN 

LR N 87.51 1.00 93.34  

63.86 

 

0.00 

 

100.00 Y 0.00 0.00 0.00 

RF N 88.37 99.18 93.65  

68.58 

 

0.82 

 

91.84 Y 74.53 8.15 14.70 

XGB N 89.96 99.22 94.36  

77.65 

 

0.78 

 

77.60 Y 80.37 22.39 35.03 
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where, ND: Need Dispatch, N: No, Y: Yes, PR: Precision, REC: Recall, F1: F1 score, AUC: Area Under the 

Curve, FP: False Positive (The lower, the better), FN: False Negative (The lower, the better). 

Table 16 - Percentage of metrics on mobile test set 

Model ND PR RCL F1 AUC FP FN 

LR N 91.15  97.19 94.40 73.92 

 

2.81 

 

76.95 

 Y 57.37  23.04 32.88 

RF N 92.16  97.26 94.64 76.61 

 

2.74 

 

67.01 

 Y 59.77  32.98 42.51 

XGB N 92.35  97.73 94.97 78.46 

 

2.27 

 

65.53 

 Y 65.20  34.46 45.09 

 

We have a low percentage of FP in dispatch need prediction of switch and mobile TTs, indicating that 

the model has a low false dispatch rate. False workforce dispatch is cost and time-consuming for the 

company. Therefore, our predictive models perform well in optimizing resource usage. However, we have 

a high percentage of FN in both cases, showing that the models ignore many cases that need dispatch. We 

think this is because our data sets are imbalanced. We applied oversampling techniques such as Synthetic 

Minority Oversampling Technique (SMOTE) [35] to tackle this problem; however, using balancing 

techniques we observed the trade-off between precision and recall metrics rates, and result could not be 

improved. Handling imbalanced nature of the problem could be left as a reference point for future works. 

Performance w.r.t Increase in Training Samples: We aim to improve the results to provide the most 

reliable information to NOC and customers. To do so, we investigate if having more data can improve the 

performance of our predictive models. In other words, will collecting more data over the years result in 

better predictive performance? To come up with an answer, we train the models on exponentially growing 

numbers of switch and mobile training samples and evaluate the obtained models on the unchanged sets 

of test set. Figure 22 shows the MAE convergence of the models. According to this plot, the MAEs are 

decreasing and flattening to some points, making the changes insignificant. As a result, increasing the 

number of training samples will not help improve the models' performance. We need to search for other 

solutions to boost the predictive performance of our models. 
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Figure 22 - MAE changes on switch and mobile test sets as training 

Resolution time confidence interval for customer satisfaction: Regarding resolution time prediction 

for the switch and mobile TTs, we devised an approach to propose approximate resolution time ranges 

within which the TTs will be resolved with a high probability. In other words, to understand the predictive 

performance of our best regression model (XGB), we investigate what percentages of the test sets are 

underestimated and overestimated by the models and if marginalizing the predicted values increases the 

chance of a more reliable prediction. Marginalizing the predicted time refers to increasing it with different 

values. This can be done in two ways: 1. Adding a fixed value (ex. 25 minutes, 50 minutes, etc.) to the 

predicted time, or 2. increasing the predicted time by a percentage (ex. 25%, 50%, etc.). Figure 23 (a) show 

the percentages of switch and mobile TT test samples resolved within their marginalized predicted time. 

Based on this plot, there is an insignificant difference between resolved percentages of fixed and relative 

margins for the switch TTs. However, for mobile TTs, more test samples are resolved within the predicted 

time shifted by fixed margins. According to Figure 23 (b), the MAE changes for mobile TT test samples are 

almost the same in both fixed and relative marginalization cases; however, for switch TT test samples, the 

changes in MAE resulted by relatively marginalizing the predicted values are much more severe. 

Based on figure 24, we choose 60 minutes as the confidence interval among different fixed margin 

values. That is because of two reasons: 1. increasing the predicted times by 60 minutes results in the 

resolution of almost 90% of switch TT test samples and 80% of mobile TT test samples within the estimated 

ranges (plot a), 2. It also causes the lowest possible increase in MAEs of XGB predictors (plot b). This means 

reporting a 60-minute marginalized predicted resolution time to the users at the time of disturbance 

occurrence will guarantee QoE. That is because with a probability of 90% for switch TTs and 80% for mobile 

TTs, the network disturbance will be resolved within the estimated ranges. 
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Figure 23 - (a) Percentage of covered switch and mobile TTs’ resolution time, (b) MAE changes 

Results at Different Timestamps: As mentioned before, the values of some features are updated 

over time in switch TTs. We would like to understand if this update will result in a better prediction. Thus, 

we build the models every 15 minutes on the updated set of features. As time passes, more TTs areresolved, 

specifically, the ones that are resolved automatically. Figure 24 (a) shows the over-time changes in the 

number of unresolved TTs and MAE of the XGB model for prediction of resolution time. According to this 

figure, we observe a drop in MAE value at T1. We also have a low portion of test samples resolved at this 

time (almost 2%). This means because of adding more information to the system within 15 minutes after 

TT creation, we get 57% improvement in resolution time prediction with the least possible data loss. Figure 

24 (b) shows the over-time changes in the number of unresolved TTs and macro average F1 score for 

dispatch need prediction of switch TTs. In this case, at T1, we have maximum value of the macro F1 metrics. 

This indicates only after 15 minutes of TT creation; we can predict 95% of TTs that need dispatch and almost 

100% of TTs that do not need dispatch with significantly lowest rate of FP and FN. 

 

Figure 24 - (a) MAE and unresolved TTs, (b) F1 score and unresolved TTs. For the best model 

 

4.5 Conclusions and Future work 

In this work, we presented a proof of concept for an assistant automated system in the telco network 

disturbance management domain of Telenor Sweden. Our approach was a pragmatic step towards realizing 

autonomous networks benefiting Telenor customer services delivered through fixed and mobile access 

networks. We used thousands of historical TTs coming from fixed and mobile network domains. 

Furthermore, we presented thorough feature engineering and model selection pipelines to tackle the data 

complexity and heterogeneity. Mainly, we investigated the impact of different TTs’ features on two target 

variables (resolution time and on-site dispatch need), considering their life-cycle evolvement. As far as we 



                 
  

39 
 

H2020-MSCA-ITN-2019-GA861165 

D4.3: Performance evaluation of automated network control and proof-of-concept 

  

H2020-MSCA-ITN-2019  

861165 - SEMANTIC    

H2020-MSCA-ITN-2019  

861165 - SEMANTIC 

know, this is the first time the evolution of network TTs and their impact on target variables has been 

studied with concrete results. For the first use case, we come up with a 60-minute confidence interval and 

succeeded to predict the correct resolution time ranges in 90% and 80% of the cases at ticket creation time 

for respectively, switch and mobile TTs. We had a 80% and 61% improvement over company baseline for 

this approach. In second case, there is no company baseline, and we achieved an average macro F1 score 

of 65% and 70% for switch and mobile TTs at creation time. This indicates a significant optimization in 

workforce (resource)usage of the company. 

We also studied the evolution of the switch TTs over time as more information was added to them. 

We realized that adding more data to TTs within 15 minutes of their creation can improve their resolution 

time and dispatch need prediction. In the resolution time prediction case, we devised a solution to increase 

customer satisfaction by choosing a confidence interval. We also provided valuable insights by comparing 

these two data sets. First, we realized strong non-linearity of data leads to better predictive performance 

of XGB and NN models. Second, adding more data in both cases did not improve the performance of the 

models. Third, various characteristics of access switch and radio base station disturbances, reflected in both 

data sets, result in different predictive performances of the models. To address future works, we consider 

studying the root causes of network disturbances based on performance data and the impacts on target 

variables. A thorough research can also be performed to address the imbalanced nature of the data. We 

can develop approaches for correlating performance data with TTs and draw insights for more autonomous 

network management. 

Following del 4.1 and 4.2 about state-of-the-art approaches and proposed system model for data 

driven network control and automation towards 10-fold improvement of temporal and spatial allocation 

of network resources, in Del 4.3, we managed to give an extensive evaluation of the proposed methodology 

in network disturbance domain and as a result, presented a proof of concept as the support for many future 

requirements of a self-driven autonomous network. Our approach was a pragmatic step towards realizing 

autonomous networks benefiting Telenor consumer services delivered through fixed and mobile access 

network domains. Conclusively, our analysis proved the possibility of meeting SEMANTIC goals by providing 

an assistant data driven solution for an improved resource optimization. 

 

5 Slice Resource Allocation with Distributed Deep Neural Networks 

 

5.1 Introduction 

5G networks are expected to support a large number of tenants simultaneously with different Quality 

of Service (QoS) requirements and services with different service level agreements (SLA). Satisfying these 

expectations makes optimal resource allocation a key to the success of 5G networks. However, traditional 

optimization approaches for this task are often impractical, paving the way for data-driven approaches 

proposed in recent AI literature [36-39]. Specifically, data-driven algorithms are expected to execute at 

various network locations, leveraging the computational capabilities at MEC, RAN, and the core in modern 

cellular networks. Slice resource allocation using deep learning has been a popular recent research 

direction in the context of 5G networks [40-44]. Also, reinforcement learning has recently been applied to 

the problem of resource orchestration [41], [43], [45]. 

Nevertheless, optimization objectives in this context are based on the SLAs and are often 

asymmetric: i.e., the cost of under-provisioning (penalty paid to the tenant) might differ from the cost of 

over-provisioning (opportunity cost of wasted resources). However, running a centralized heavy duty DNN 

faces two key challenges in (5G+) wireless architectures: (i) a number of network optimization tasks, 

especially those at the RAN, have stringent latencies compared to UE-level applications often offloaded to 
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the cloud. (ii) the overhead of sending raw data over potentially congested edge/wireless links can often 

be a major hurdle in the application of such solutions. 

Motivated by the research done in [46-51], in this work, we attempt to further show the generality 

of distributed deep neural networks methodology by investigating how to distribute a more sophisticated 

DNN architecture for the same task, based on LSTM (Long Short Term Memory) units. Specifically, the main 

contributions of this work are the following: 

• We propose a distributed LSTM architecture for the problem of balancing under-/over-provisioning 

of resources to different slices and investigate how the methodology of DDNNs can be applied to 

such larger, more sophisticated architectures (compared to that of [46]). 

• We demonstrate the impact of properly tuning the joint training hyperparameters of local and 

remote “exits” (i.e., predicted allocations and related SLA costs) to achieve a good balance 

between: (i) making the local layers powerful enough to correctly make a large enough number of 

allocation decisions, while (ii) producing useful features that the remote layers could leverage, 

when improved allocation decisions are deemed necessary. 

• We propose a mechanism that measures the confidence in the local exit, and predicts whether the 

remote exit (that requires additional latency and communication) would improve the SLA costs 

enough to justify the extra overhead (i.e., a type of unsupervised learning). 

 

5.2 Problem setup 

Assume we have a set of 𝐾  network functions (e.g. VNFs) or network elements (e.g. BSs). Each 

network function/element requires some resources which will be allocated according to its traffic demand 

(e.g. each base station requires some Band Width (BW)). We can consider the DNN as a black box and 

model it with an approximation function with some parameters that takes an input vector and gives the 

predicted value. Therefore we can write: 

𝑦̂𝑡
𝑖 = 𝐷𝑁𝑁(𝒅𝑡,𝑁

𝑖 , 𝜽)          (5) 

Where 𝒅𝑡,𝑁
𝑖  is the input vector for the DNN. The input vector 𝒅𝑡,𝑁

𝑖 = {𝑑𝑡−𝑁
𝑖 , … , 𝑑𝑡−1

𝑖 } consists of the 

𝑁 past traffic samples of BS 𝑖 ∈ 𝐾 before the time 𝑡. 𝑁 is the input vector size and is constant during the 

model training. 𝐷𝑁𝑁(: , 𝜽) is the approximation function with 𝜽 as parameters. The vector 𝜽 is the model 

parameters (i.e. weights of the DNN). 𝑦̂𝑡
𝑖 is the predicted traffic demand for BS 𝑖 at time 𝑡. DNN will be 

trained to predict the best approximation of the real traffic demand for BS 𝑖 at time 𝑡, i.e. 𝑑𝑡
𝑖 . The objective 

function determines how good the prediction value is. 

In a standard forecasting problem, one wants to predict the traffic value at time 𝑡 using the past 𝑁 

traffic samples 𝒅𝑡,𝑁
𝑖 = {𝑑𝑡−𝑁

𝑖 , … , 𝑑𝑡−1
𝑖 }. The goal is that the predicted value 𝑦̂𝑡 be as close as possible to the 

real traffic 𝑑𝑡. To achieve this we can train a DNN with a least squares objective function. 

𝑓(𝑦̂𝑡 , 𝑑𝑡) = (𝑦̂𝑡 − 𝑑𝑡)
2           (6) 

As mentioned before, the goal is to predict a value that is as close as possible to the real value and 

the fact that the predicted value can be higher or lower the real value doesn't matter. A key difference in 

our work is that, the goal is not just to predict a value, the predicted traffic demand will be used to allocate 

resources to network elements. In this case, predicted traffic being less or more than the real traffic is very 

important. If the predicted traffic is less than the needed traffic, then not enough resources will be allocated 

to the corresponding network element; this is called underprovisioning (𝑦̂𝑡 < 𝑑𝑡) and could violate the 

Service Level Agreement (SLA) with the slice tenants. If the predicted traffic is more than the needed traffic, 

then more resources than what is needed will be allocated to the corresponding network element; this is 

called overprovisioning (𝑦̂𝑡 > 𝑑𝑡) and although tenants are satisfied but some resources will not be used. 
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To this end, we are looking for an objective function that makes the DNN to avoid underprovisioning and 

to minimize overprovisioning. One recommended objective function is: 

𝑓(𝑦̂𝑡 , 𝑑𝑡) = {

𝑐 − 𝜖(𝑦̂𝑡 − 𝑑𝑡)    𝑖𝑓 (𝑦̂𝑡 − 𝑑𝑡) ≤ 0

𝑐 −
1

𝜖
(𝑦̂𝑡 − 𝑑𝑡)       𝑖𝑓 0 < (𝑦̂𝑡 − 𝑑𝑡) ≤

(𝑦̂𝑡 − 𝑑𝑡) − 𝜖𝑐      𝑖𝑓 (𝑦̂𝑡 − 𝑑𝑡) > 𝜖𝑐

𝜖𝑐              (7) 

where 𝜖 is a very low constant value that is used just to help the stochastic gradient descent (SGD) in DNN 

operate correctly. Constant 𝑐 is a penalty that tries to avoid underprovisioning and the linear penalty tries 

to minimize overprovisioning. This function is shown in Figure 25. 

 

Figure 25 - Cost function with 𝑐=0.5,𝜖=0.1 

Another objective function that can be used is: 

𝑓(𝑦̂𝑡 , 𝑑𝑡) =

{
 

 
𝑐 + 𝑐1(𝑦̂𝑡 − 𝑑𝑡)

2     𝑖𝑓 (𝑦̂𝑡 − 𝑑𝑡) ≤ 0

𝑐 −
1

𝜖
(𝑦̂𝑡 − 𝑑𝑡)            𝑖𝑓 0 < (𝑦̂𝑡 − 𝑑𝑡) ≤

(𝑦̂𝑡 − 𝑑𝑡) − 𝜖𝑐           𝑖𝑓 (𝑦̂𝑡 − 𝑑𝑡) > 𝜖𝑐

𝜖𝑐               (8) 

This objective function suggests to penalize underprovisioning quadratically. The function is shown 

in figure 26. 

 

Figure 26 - Cost function with 𝑐=0.5, 𝑐1=50, 𝜖=0.1 
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Without loss of generality, we'll assume the following objective: 

𝑓(𝑦̂𝑡 , 𝑑𝑡) = {
𝑐1(𝑦̂𝑡 − 𝑑𝑡)

2          𝑖𝑓 (𝑦̂𝑡 − 𝑑𝑡) ≤ 0
 

𝑐2(𝑦̂𝑡 − 𝑑𝑡)           𝑖𝑓 (𝑦̂𝑡 − 𝑑𝑡) > 0
               (9) 

Where SLA violations has quadratic penalty and overprovisioning penalty is linear. This function is 

illustrated in figure 27. 

 

Figure 27 - Cost function with 𝑐1=50, 𝑐2=1 

 

5.3 System model 

In this section, we propose a Distributed Deep Neural Network (DDNN) architecture over a 5G 

network setup. The DDNN runs a small subset of DNN layers at edge (e.g. RAN) and more layers in cloud 

(e.g. MEC). 

We assume a 5G network in which a set of BSs require some resources. Each BS at time 𝑡 demands 

an amount of resources (e.g. BW), 𝑑𝑡
𝑖 , to fulfill its corresponding users SLAs. We have the past 𝑁 demand 

values 𝒅𝑡,𝑁
𝑖 = {𝑑𝑡−𝑁

𝑖 , … , 𝑑𝑡−1
𝑖 } . Traffic demand samples are random and possibly non-stationary. The 

vector 𝒅𝑡,𝑁
𝑖  is given to the DDNN to predict the demand for each BS at time 𝑡, 𝑦̂𝑡

𝑖. We can describe the 

DDNN with the following equation: 

(𝑦̂𝐿,𝑡
𝑖 , 𝑦̂𝑅,𝑡

𝑖 ) = 𝐷𝐷𝑁𝑁(𝒅𝑡,𝑁
𝑖 ; 𝜽)          (10)        

Where the 𝐷𝐷𝑁𝑁(; 𝜽) is the approximation function that models the DDNN and 𝜽 is the model 

parameters. 𝑦̂𝐿,𝑡
𝑖  and 𝑦̂𝑅,𝑡

𝑖  are the output of the local and remote exits respectively. We can consider the 

DDNN as two DNN that are connected to each other as shown in figure 28. One DNN in the local and another 

in the remote. 
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Figure 28 - LSTM network is distributed over RAN and MEC 

As shown in figure 28, we use a Three Layer LSTM network for the prediction. The deep neural 

network is distributed over RAN which is the local part and MEC which is the remote part. 

Local Exit: At the local DNN, first we put a 1 dimensional convolution. The 1D convolution block is 

used as feature detector for time series input data. Then, there is a 1 dimensional batch normalization 

which accelerates deep network training by reducing internal covariate shift. We use the default 

batchnorm1d pytorch parameters for this block. After that, we put 1 layer LSTM block. This LSTM layer has 

just 1 unit, comparing to the number of units in the next layers, the LSTM in local is very simple. Then, there 

is a dropout layer for regularization. The output will be sent to a Fully Connected (FC) layer and also will be 

stored and in case needed will be sent to remote layers. The FC layer in local is linear, the output of this 

layer is called local predictions, i.e. 𝑦̂𝐿,𝑡
𝑖 . 

In order to have fast resource allocation and also lower computation cost, we are looking for high 

number of locally resolved samples. If the local prediction is "good enough" then it will be the traffic 

demand prediction otherwise the data will be sent to remote where there are additional NN layers to 

forecast the traffic demand. The mechanism gives a confidence signal, i.e. YES/NO about local predictions. 

The output of FC layer in local is given to the confidence mechanism and it decides whether the DNN in 

local is confident about the prediction which means the local prediction is good or the sample need to be 

processed more which means data should be sent to remote layers. 

Remote Exit: The output of the local dropout layer will be sent to the remote. At the remote DNN, 

first there is a 1 dimensional batch normalization with default parameters. Then, there is a LSTM layer with 

128 units. After that, there is a dropout layer followed by a 1 dimensional batch normalization with default 

parameters. Then, there is the last LSTM layer with 64 units again followed by a dropout layer and a 1 

dimensional batch normalization with default parameters. Then, there are four FC layers. The first FC has 

128 hidden neurons with ReLu activation function. The second FC has 64 hidden neurons with ReLu 

activation function. The third FC has 32 hidden neurons (linear layer), and the last FC layer make the 

predictions. The output of the last FC layer in remote DNN is called remote predictions, i.e. 𝑦̂𝑅,𝑡
𝑖 . If the local 

prediction was not good enough, decided by confidence mechanism, then the traffic demand prediction is 

the remote prediction. 

 

5.4 Model Training 

While training a centralized DNN is quite straightforward, DDNN training requires jointly training the 

local and remote DNN modules towards achieving a common goal. Joint training means weighing both the 

local and remote exits in the objectives as follows and allowing the error of both to backpropagate through 

their respective DNN layers. The DDNN overall loss is calculated as follows: 
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𝐿𝑜𝑠𝑠𝐷𝐷𝑁𝑁 = ∑ 𝑤𝐿 ∗ 𝑓(𝑦̂𝐿,𝑚, 𝑑𝑚) + 𝑤𝑅 ∗ 𝑓(𝑦̂𝑅,𝑚, 𝑑𝑚)

𝑀

𝑚=1

           (11) 

In Equation (11), 𝑤𝐿 is the “local weight” and 𝑤𝑅 is the “remote  weight”, which regulate the impact 

of the local and remote exit on the overall loss of the DDNN during the joint training. These weights, 

𝑤𝐿 , 𝑤𝑅 ∈  [0,1] and 𝑤𝑅 = 1 − 𝑤𝐿 , play an important role in the optimization process. If we set 𝑤𝐿 = 0 

(which also means 𝑤𝑅 = 1 ) then the DDNN resembles a centralized DNN and tries to optimize the 

performance in the remote exit. Similarly, if we set 𝑤𝐿 = 1 (which also means 𝑤_𝑅 = 0) then the DDNN 

tries to optimize the performance in the local exit. Selecting the best (𝑤𝐿 , 𝑤𝑅) is crucial in order to achieve 

the desired goals (i.e., good local predictions, allocating resources locally for many slices, and good remote 

predictions). 

Oracle-based Offloading: First, let us assume an “oracle” that know the potential added value of 

remote processing for any sample. We will use this as reference. We can calculate the loss difference: 

𝐿𝐷 = 𝑓(𝑦̂𝐿,𝑚, 𝑑𝑚) − 𝑓(𝑦̂𝑅,𝑚, 𝑑𝑚)           (12) 

If, for example, we want to offload for example 40% of the samples locally, then we pick 40% of the 

samples with the lowest 𝐿𝐷 for offloading in the local exit and the remaining samples, which have higher 

𝐿𝐷, will be exited remotely. Hence, if we did have such an oracle, we could certainly always keep the local 

decisions that will be better than the remote ones. While among samples for which the remote exit is 

better, we would choose to keep the local ones that are closest to the remote ones. Finally, when Equation 

(12) is large, this suggests that the remote exit could offer significant cost benefits (hence justifying the 

additional overhead). 

Bayesian Confidence-based Offloading: Unfortunately, in practice we do not have such an oracle, as 

the right term of Equation (12), i.e., the remote decision 𝑦̂𝑅,𝑚 and the related cost, cannot be known at the 

edge, without actually sending the sample to the remote cloud. We propose a methodology based on 

random dropouts, applied to the local forward pass, motivated by the Bayesian confidence metric in [47] 

(this dropout is different from the dropout block used as a regularizer during the training)  

The confidence block includes a dropout layer with dropout probability 𝑝 =  0.4, followed by a linear 

FC block. The intermediate signal 𝑧 is given to the confidence block and it is forced to infer for each input 

sample, say 𝐽 =  10 times. The randomness of the dropout makes the inference of the confidence block 

different at each time. Therefore, for each base station, we have an array ∈  𝑅𝐽 . For each base station. 𝑘 ∈

 𝐾, we calculate the standard deviation (𝜎𝑘) and then take the average among the K base stations. We refer 

to this value as Uncertainty: 

𝑈 =
1

𝑘
∑𝜎𝑘

𝐾

𝑘=1

            (13) 

This metric serves as a worst case estimate of how much perturbations have affected the local 

decisions. The confidence mechanism compares the measured uncertainty (𝑈 ) value with a given 

confidence threshold (𝜂), which is a design parameter of the DDNN. If 𝑈 < 𝜂, then the model is confident 

about the local decision, and it is considered “good enough”. Otherwise, the intermediate signal 𝑧 will be 

sent to the remote layers, where the remote decision is assumed to be the correct decision. 

 

5.5 Performance Evaluation 

Resource Allocation and Communication Trade-off: After jointly training the model, for each 𝜂 

(confidence threshold) in [0, 1] we measure the samples in the test set that can be exited locally and then 

calculate the total loss, as in Equation (11). We plot the trade-off curve, which represents the total loss 
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versus the percentage of samples resolved in the local exit. When we use Oracle-based Offloading, we 

obtain the offline trade-off curve. By using Bayesian Confidence-based Offloading, we produce the online 

trade-off curve. 

In Figure 29 we plot both offline and online trade-off curves for the model with (local, remote) 

training weights (𝑤𝐿, 𝑤𝑅)  =  (0.9, 0.1). We can see that the Bayesian offloading mechanism (blue curve) 

has a good performance compared to the oracle offloading (black curve), which represents the ideal 

offloading policy. We can see that when 40% (or less) of the samples are exited locally, the oracle and 

Bayesian mechanisms have similar performance. 

 

Figure 29 - Total loss vs percentage of samples exited locally with (𝑤𝐿, 𝑤𝑅) = (0.9,0.1) 

The online trade-off curve for three models is shown in figure 30. We repeat the process for three 

DDNN models each using the following (local, remote) training weights, respectively: (0.8, 0.2), (0.87, 0.13) 

and (0.9, 0.1). In this figure, we also mark the centralized DNN loss and the DeepCog loss. The centralized 

LSTM architecture indeed slightly outperforms the centralized CNN-based architecture of DeepCog, as 

expected. (We remind you that our main goal here is not to improve the DNN architecture itself, but rather 

to investigate how to distribute more complex, memory-based DNNs for such tasks). 

 

Figure 30 - Total loss vs percentage of samples exited locally for three models 
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As we can see in figure 30 the (𝑤_𝐿, 𝑤_𝑅)  =  (0.9, 0.1) model achieves the best trade-off in the 

considered scenario. It is possible to resolve more than 50% of the samples locally while the overall loss 

equals that of the centralized DNN. The (𝑤_𝐿, 𝑤_𝑅)  =  (0.8, 0.2)  model, can resolve all the samples 

remotely, i.e., \𝑒𝑡𝑎 = 0, while the total loss is nearly 25% less than that of the centralized DNN loss. Also, 

with this model, we can offload more than 40% of the samples locally while the cost is the same as that of 

the centralized DNN. 

It is evident that the overall trade-off curve is affected by the choice of the (offline) training weights. 

In figure 31, the online trade-off curve for the model with (𝑤_𝐿, 𝑤_𝑅)  =  (0.1, 0.9) is shown (by increasing 

the confidence threshold 𝜂, we can plot it). We observe that with this pair of weights, the model doesn't 

perform well and in fact, its loss is always more than that of the centralized models. We have also analyzed 

other weight combinations, yet it is clear that even for “non-optimal” weight choices, there is still an 

interesting trade-off achieved. Another important observation is that, in our model a local weight higher 

than the remote weight (𝑤𝐿  >  𝑤𝑅  or 𝑤𝐿  >  0.5) is needed to counterbalance the fact that the local 

module is much simpler/shallower, and be able to surpass the centralized DNN performance. 

 

Figure 31 - Total loss vs percentage of samples exited locally with (𝑤𝐿, 𝑤𝑅) = (0.1,0.9) 

SLA Violations Avoidance: In Figures 32 and 33, the real traffic demand (BandWidth) (𝑑) in the test 

set, the local allocations (𝑦̂𝐿), and the remote allocations (𝑦̂𝑅) for one of the base stations with two different 

(local, remote) training weights (𝑤𝐿 , 𝑤𝑅)  =  (0.9, 0.1)$ and (𝑤𝐿 , 𝑤𝑅) = (0.1, 0.9) have been illustrated. 

To obtain local and remote predictions for all samples, we don't use the confidence mechanism. In figure 

32, we can see that with (𝑤𝐿 , 𝑤𝑅)  =  (0.9, 0.1) the local exit has good performance and some samples can 

be predicted locally, while figure 33 shows that with (𝑤𝐿 , 𝑤𝑅)  =  (0.1, 0.9), the local exit doesn't work well 

and using local predictions increases the cost which was expected according to the trade-off curve for this 

weight pair in Figure 31. Also, we observe that both models avoid SLA violations, rather than trying to 

“match” the demand (as an MSE objective would), due to the higher cost of under-provisioning in our 

objective function.  
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Figure 32 - Real traffic demand with (𝑤𝐿, 𝑤𝑅) = (0.9,0.1) 

 

 

Figure 33 - Real traffic demand with (𝑤𝐿, 𝑤𝑅) = (0.1,0.9) 

 

5.6 Conclusions and Future work 

We designed and implemented a Distributed Deep Neural Network (DDNN) for forecasting future 

traffic demand and allocating resources accordingly in 5G+ networks. The proposed DDNN is a DNN with 

multiple exit points: one local exit (e.g., Edge) and one remote exit (e.g., Cloud). The DDNN needs to be 

trained jointly to achieve the desired goals. During joint training, a weight is assigned to the local exit, and 

another weight is assigned to the remote exit, which encourages good performance at the local exit and 

also affects the performance of the remote exit. Additionally, the objective function plays an important 

role in avoiding under-provisioning. We use a Bayesian confidence mechanism to determine either the 
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samples should offload locally or remotely. In comparison with centralized models, our algorithm can 

achieve lower or equal cost performance while resolving more than 50% of the samples locally and also 

reducing latency. 

We are currently investigating alternative confidence mechanisms to reduce computational usage 

and accelerate the allocation process in online mode. Additionally, we are considering implementing the 

model with multiple local exits. As the local and remote weights play an important role, adaptive tuning of 

local and remote weights (𝑤𝐿, 𝑤𝑅) during training could be an interesting topic for future work. 

 

6 Conclusions 

This document acts as a summary of the efforts that have been done towards SEMANTIC Work 

Package 4. After a short introduction, deliverable D4.3 presented a description of the problems currently 

being tackled by each ESR, their analysis, approach, proposed solution, and the simulation results and 

analytical explanations.  
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List of Acronyms and Abbreviations  

Acronym  Description  

3D-DefCNN 3D Deformable Convolutional Neural Networks 

5G 5th generation (5G) mobile network 

6G 6th generation (6G) mobile network 

AF Application Function 

AI/ML Artificial Intelligence / Machine Learning 

AP Access Point 

BBU Baseband Unit 

BS Base Station 

BW Bandwidth 

CMDP Constrained Markov Decision Process 

CNN Convolutional Neural Network 

CRAN Cloud Radio Access Network 

CQI Channel Quality Indicator 

DDNN Distributed Deep Neural Network 

DNN Deep Neural Network 

E2ENS End-to-End Network Slicing 

EMBB/eMBB Enhanced Mobile Broadband 

FC Fully Connected 

FNN Feedforward Neural Network 

IPO Interior-point Policy Optimization 

KPI Key Performance Indicator 

LSTM Long Short-Term Memory 

MDP Markov Decision Process 

MEC Multi-Access Edge Computing 

MIMO Multiple-Input Multiple-Output 

ML Machine Learning 

mMTC massive Machine Type Communication 

MNO Mobile Network Operator 

MTD Mobile Traffic Decomposition 

NOC Network Operation Center 

NN Neural Network 

O-RAN Open-RAN 

OSS Operations Support System 

PPP Poisson Point Process 

QoE Quality of Experience 

QOS Quality of Service 

RAN Radio Access Network 

RAT Radio Access Technology 

ReLU Rectified Linear Unit 

RIC RAN Intelligence Controller 

RL Reinforcement Learning 

RNN Recurrent Neural Network 

RRH Remote Radio Head 

RSRP Reference Signal Received Power 

RSRQ Reference Signal Received Quality 

RSSI Reference Signal Strength Indicator 

RT Resolution Time 

SGD Stochastic Gradient Descent 

SINR Signal to Interference Noise Ratio 
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SLA Service Level Agreement 

TT Trouble Ticket 

UE User Equipment 

URLLC Ultra-Reliable Low Latency Communication 

VNF Virtual Network Function 
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