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1 Executive Summary 

This deliverable is the follow-up of deliverable 3.2, which was the initial proposed optimization 

frameworks and algorithms towards optimal network slicing, contributed by the SEMANTIC 

ESRs, in the framework of WP3 (Optimizations for integrated access/X-haul and end-to-end 

slicing). The proposed solutions considered an end-to-end slicing perspective as well as novel 

technologies, like integrated access/X-haul and traffic steering. This document presents the 

progress of ESRs, including the final results and numeric simulation details. Each Chapter of this 

report focuses on different aspects of network slicing and corresponds to the work of a different 

ESR. It includes an introduction section for all the contributions, followed by a detailed 

description of the work of each ESR in each section. In chapter 3, the slice resource allocation 

problem at the RAN-Edge domain is examined, and a zero-touch Federated Learning solution 

combined with Explainable AI techniques is proposed. The chapter 4 provides a framework for 

slice resource allocation and management in the RAN-Edge domain, proposing distributed deep 

Reinforcement Learning solutions at different timescales to optimize resource utilization and 

distribution. Finally, the Chapter 0 tackles the dynamic slice embedding problem, introducing a 

generic framework suitable for multi-domain networks and end-to-end slice KPIs, while a multi-

agent deep Reinforcement Learning approach is proposed. 
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2 Introduction 

The standardization and deployment of the fifth generation (5G) of mobile networks is ongoing 

during the last few years. Enhanced mobile broadband (eMBB), massive machine-type 

communications (mMTC), and ultra-reliable and low latency communications (uRLLC) are three 

major communication scenarios. Concurrently, both academia and industry have focused on 

research for beyond 5G (B5G) and towards 6G networks. These networks are not limited to the 

three major use cases of 5G [1], they are envisioned to support more vertical application 

scenarios, having unique features and specific capabilities (e.g., latency, peak date rate, etc.). The 

parallel provisioning of such heterogeneous vertical services urges a highly flexible, adaptive, 

and intelligent network architecture, directly contradicting the “one-size-fits-all” network design 

paradigm. 6G networks are expected to intelligently support a massive number of simultaneous 

and heterogeneous slices. Consequently, the challenges of scalability and sustainability will 

affect the deployment of artificial intelligence (AI)-driven zero-touch management and 

orchestration (MANO) of end-to-end (E2E) slices. In this respect, ETSI has standardized the 

zero-touch network and service management (ZSM) framework, where a reference architecture 

and AI-based closed-loop management automation have been proposed [2]. However, the 

traditional centralized approach for monitoring, analyzing, and controlling the underlying raw 

data will be problematic, because it suffers from significant overhead, delay, and a single point 

of failure. On the other hand, decentralized approaches ensure scalability, low data exchange and, 

therefore, more security. In this view, distributed artificial intelligence (AI) approaches, 

particularly Federated Learning (FL) techniques can play a vital role in monitoring scattered data 

across the network while reducing the computational costs and enabling fast local analysis and 

decision. Nonetheless, both the convergence delay and computation cost often limit FL capability 

under non-IID real network data. These aspects are going to be considered in the FL approach 

proposed in chapter 3. Furthermore, in real deployment, both the operator and the slice tenant 

need to understand the behavior of the FL model, in order to trust AI’s decisions. Thus, 

Explainable Artificial Intelligence (XAI) empowered Federated Learning (FL) is getting a lot of 

attention due to the end-user trust and secured operation. This approach, which can build an 

advanced AI-based trust model, ensure hassle-free processes, and improve security to the 6G 

heterogeneous networks, will be also examined in chapter 3. 

 

The diverse requirements of beyond 5G services increase design complexity and demand 

dynamic adjustments to the network parameters. This can be achieved with slicing and 

programmable network architectures such as the open radio access network (ORAN). It facilitates 

the tuning of the network components exactly to the demands of future-envisioned applications 

as well as intelligence at the edge of the network. 

Artificial intelligence (AI) has recently drawn a lot of interest for its potential to solve challenging 

issues in wireless communication. Due to the non-deterministic, random, and complex behavior 

of models and parameters involved in the process, radio resource management is one of the topics 

that needs to be addressed with such techniques. The study presented in Chapter 4 proposes 

quality of service (QoS)-aware intra-slice resource allocation that provides superior performance 

compared to baseline and state-of-the-art strategies. The slice-dedicated intelligent agents learn 

how to handle resources at near-RT RIC level time granularities while optimizing various key 

performance indicators (KPIs) and meeting QoS requirements for each end user. In order to 

improve KPIs and system performance with various reward functions, the study discusses 

Markov’s decision process (MDP) and deep reinforcement learning (DRL) techniques, notably 

deep Q network (DQN). The simulation evaluates the efficacy of the algorithm under dynamic 

conditions and various network characteristics. Results and analysis demonstrate the 



                 
  

10 
 

H2020-MSCA-ITN-2019-GA861165 

Deliverable D3.3 

  

H2020-MSCA-ITN-2019  

861165 - SEMANTIC    

H2020-MSCA-ITN-2019  

861165 - SEMANTIC 

improvement in the performance of the network for enhanced mobile broadband (eMBB) and 

ultra-reliable low latency (URLLC) slice categories. 

 

Data-driven network slicing has recently been explored as a major driver for networks beyond 

5G. Nevertheless, we are still a long way before such solutions are practically applicable to real 

problems. Most solutions addressing the problem of dynamically placing virtual network 

function chains (''slices'') on top of a physical topology still face one or more of the following 

hurdles: (i) they focus on simple slicing setups (e.g., single domain, single slice, simple VNF 

chains, and performance metrics); (ii) solutions based on modern reinforcement learning theory 

have to deal with astronomically high action spaces when considering multi-VNF, multi-domain, 

multi-slice problems; (iii) the training of the algorithms is not particularly data-efficient, which 

can hinder their practical application given the scarce(r) availability of cellular network related 

data (as opposed to standard machine learning problems). To this end, in Chapter 0, we attempt 

to tackle all the above shortcomings in one common framework. For (i), we propose a generic, 

queuing network-based model that captures the inter-slice orchestration setting, supporting 

complex VNF chain topologies and end-to-end performance metrics. For (ii), we explore multi-

agent DQN algorithms that can reduce action space complexity by orders of magnitude compared 

to standard DQN. For (iii), we investigate two mechanisms to store and select from the experience 

replay buffer to speed up the training of DQN agents. The convergence speed gains of the 

proposed scheme are validated using real traffic data. 
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3 Joint Explainability and Sensitivity-Aware Federated 

Deep Learning for Transparent 6G RAN Slicing 

3.1 Introduction 

In recent years, wireless networks are evolving complex, which upsurges the use of zero-touch 

artificial intelligence (AI)-driven network automation within the telecommunication industry. In 

particular, network slicing, the most promising technology beyond 5G, would embrace AI 

models to manage the complex communication network. Besides, it is also essential to build the 

trustworthiness of the AI black boxes in actual deployment when AI makes complex resource 

management and anomaly detection. Inspired by closed-loop automation and Explainable 

Artificial intelligence (XAI), we design an Explainable Federated deep learning (FDL) model to 

predict per-slice RAN dropped traffic probability while jointly considering the sensitivity and 

explainability-aware metrics as constraints in such non-IID setup. In precise, we quantitatively 

validate the faithfulness of the explanations via the so-called attribution-based log-odds metric 

that is included as a constraint in the run-time FL optimization task. Simulation results confirm 

its superiority over an unconstrained integrated-gradient (IG) post-hoc FDL baseline. 

3.2 Related Works 

The most promising  6G network slicing technology insists on adopting autonomous management 

and orchestration of the end-to-end (E2E) network resources at the network domains because the 

isolation of slices may induce a high cost in terms of efficiency [3], [4].So, ETSI standardized 

zero-touch network and service management (ZSM) framework has been considered [2].Here, 

zero-touch refers to the automation and management of resources without human interference. 

Besides, developing cognitive slice management solutions in 6G networks is essential to 

automatically orchestrate and manage network slices, particularly network resources across 

different technological domains (TDs), along with ensuring the end-user's QoE and QoS [5], [6]. 

Hence, the [7] has proposed an AI-native network slicing management solution of 6G networks 

to support emerging AI services.  

Also, AI algorithms should be driven by the distributed nature of datasets to acquire the full 

potential of network slicing automation, which will solve the problematic behavior of the cloud-

centric traditional ML schemes. Thus, a decentralized learning approach is required to handle 

distributed network slices efficiently.  

For this, we choose Federated learning (FL) [8] to handle distributed network slices efficiently 

like our another research work [9].Besides, even if DNN hold the state-of-the-art [10], [11] in 

solving resource allocation and orchestration problems of network slicing, the black-box nature 

of such ML models impedes understanding of their decisions, any flaws in the datasets or the 

model's performance behavior. Moreover, the 6G network is going to be "machine-centric" 

technology which signifies that all the corresponding "smart things" in the 6G network will 

operate intelligently but as a smart black box [12]. Here, the smart black box is not transparent 

in its action or decision-making processes and could have adverse effects on the network's 

operations of the 6G technology. In this concern, XAI provides human interpretable methods to 

adequately explain the AI system and its decisions for gaining the human's trust in the loop. 

Also, [13] indicates that it is a prerequisite of any ZSM-based AI models in 6G to enrich 

translucency of their models. Viewing this fact, zero-touch XAI-driven FL will be fetching a 

particular emphasis for its automation and unique advantages, which are essential for end-user  
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trust and secured procedure. In contrast, the conventional XAI focuses only on the interpretability 

and transparency of any ML system. 

Some works of XAI  [14], [15], [16] indicate the importance of explainability and present some 

research works on handover and resource allocation, etc., in the beyond 5G networks. In [17], 

XAI for physical/MAC layers in 6G networks are focused. In comparison, the authors of [18] 

present a trust-aware federated deep reinforcement learning-based device selection technique in 

an autonomous driving scenario. 

And, to evaluate the performance of XAI models, the paper [19] introduces some essential 

metrics. So, in this work, we will present a novel zero-touch Explainable Federated learning (FL) 

as the decentralized approach for traffic drop classification in 6G network slices. 

 

 

3.3 Explainable FDL for transport traffic drop classification 

In this Section, we will present an Explainable Federated learning approach to achieve transparent 

zero-touch service management of 6G network slices at RAN in a non-IID setup. 

The main contributions of this paperwork are: 

• We introduce a novel iterative explainable federated learning approach, where a 

constrained traffic drop detection classifier and an explainer exchange---in a closed loop 

way--- attributions of the features as well as predictions to achieve a transparent zero-

touch service management of 6G network slices at RAN in a non-IID setup. 

• We adopt the integrated gradients XAI method to showcase features attributions. 

• The generated attributions are then used to quantitatively validate the faithfulness of the 

explanations via the so-called log-odds metric which is included as a constraint in the FL 

optimization task. 

• We formulate the corresponding joint recall and log-odds-constrained FL optimization 

problem under the proxy-Lagrangian framework and solve it via a non-zero sum two-

player game strategy [19], while comparing with the unconstrained integrated-gradient 

post-hoc FL baseline.         
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3.3.1 Proposed Network Model 

 

Figure 3-1: RAN federated traffic drop classification in NS 

 

As shown in Fig. 3-1, we consider a radio access network (RAN), which is composed of a set of 

$K$ the base station (BSs), wherein a set of N parallel slices are deployed. Each BS runs a local 

control closed loop (CL) which collects monitoring data and performs traffic drop prediction. 

Specifically, the collected data serves to build local datasets for slice  n (n = 1, … … , n) i.e., 

Dk,n  = {xk,n 

(i)
 , yk,n

(i)
}i=1

Dk,n , where xk,n 

(i)
 stands for the input features vector while yk,n

(i)
 represents the 

corresponding output. 

In this respect, Table I summarizes the features and the output of the local datasets. These 

accumulated datasets are non-IID due to the different traffic profiles induced by the 

heterogeneous users' distribution and channel conditions. Moreover, since the collected datasets 

are generally non-exhaustive to train accurate anomaly detection classifiers, the local CLs take 

part in a federated learning task wherein an E2E slice-level federation layer plays the role of a 

model aggregator. 

 

 

Table 1: Dataset Features and Output 

Feature Description 

Average PRB Average Physical Resource Block 

Latency Average transmission latency 

Channel quality SNR value expressing the wireless channel 

quality 

Output Description 

Dropped Traffic Probability of dropped traffic (%) 
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3.3.2 Network Configuration 

We consider below three primary slices to analyse the proposed Explainable FL policy, defined 

as follows: 

• eMBB: Netflix, Youtube and Facebook Video, 

• Social Media: Facebook, WhatsApp and Instagram, 

• Browsing: Apple, HTTP and QUIC 

Here, the traffic associated with each mentioned slice is the sum of the underlying OTTs' traffics 

that collects from the hourly traffics of the slices for five days, and the overall summary of those 

datasets are presented in Table 1. 

3.4 Research Methodology 

Here, we describe the different stages of the joint explainability and sensitivity aware FDL as 

summarized in Fig. 2. 

A. Closed-loop Description 

 

 

Figure 3-2: Explainable FDL building blocks 

 

We propose a federated deep learning architecture where the local learning is performed 

iteratively with run-time explanation in a closed loop way as shown in Fig. 2. We design a deep 

neural network FL model. For each local epoch, the Learner module feeds the posterior symbolic 

model graph to the Tester block which yields the test features and the corresponding predictions 

ŷk,n
(i)

 to the Explainer. The latter first generates the features attributions using integrated gradients 

XAI method. The Log-odds Mapper then uses these attributions to select the top p features that 

are then masked. The corresponding soft probability outputs are afterward used to calculate the 

the log-odds (LO) metric that is fed back to the Learner to include it in the local constrained 

optimization in step 6. Similarly, the Recall Mapper calculate the recall score   ρk,n based on the 

predicated and true positive values at stage 3 and 4 to include it in the local constrained 

optimization in step 6. 

Indeed, for each local CL(k, n), the predicted traffic drop class ŷk,n
(i)

, (i = 1, … … , Dk,n), should 

minimize the main loss function with respect to the ground truth yk,n
(i)

, while jointly respecting 

some long-term statistical constraints defined over its Dk,n samples and jointly corresponding to 

recall and explainability log-odds.  
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As shown in steps 1 and 7 of Fig. 2, the optimized local weights at round t, Wk,n
(t)

, are sent to the 

server which generates a global FL model for slice n as, 

Wn
(t+1)

=  ∑
Dk,n

Dn
k=1

 Wk,n
(t)

                       (1) 

 

where Dn =  ∑ Dk,n
K
k=1  is the total data samples of all datasets related to slice n. The server then 

broadcasts the global model to all the k CLs that use it to start the next round of iterative local 

optimization. Specifically, it leverages a two-player game strategy to jointly optimize over the 

objective and original constraints as well as their smoothed surrogates and detailed in the sequel. 

B. Model Testing and Explanation 

As depicted in stage 2 of Fig. 2, upon the reception of the updated model graph, the Tester uses 

a batch drawn from the local dataset to reconstruct the test predictions ŷk,n
(i)

. All the graph, test 

dataset and the predictions are fed to the Explainer at stage 3. After that, at stage 4, Explainer 

generates the attributions. 

by leveraging the low-complexity Integrated Gradient (IG) scheme [20], which is based on the 

gradient variation when sampling the neighborhood of a feature. 

Attributions are a quantified impact of each single feature on the predicted output. Let, ak,n 
(i)

∈

 ɌQ denote the attribution vector of sample i, which can be generated by any attribution based 

XAI method. 

C. Log-odds Mapping    

To characterize the trustworthiness of the local model, we calculate the log-odds metric, θk,n 

[21]. It measures the influence of the top-attributed features on the model's prediction. 

Specifically, the log-odds score is defined as the average difference of the negative logarithmic 

probabilities on the predicted class before and after masking the top p% features with zero 

padding [21]. 

In this respect, the log-odds Mapper at stage 5 of Fig. 2 starts by selecting top p% features based 

on their attributions which is collected from stage 4 and replace them with zero padding. That is, 

θk,n =  − 
1

Dk,n
∑ log

Dk,n

i=1

Pr (ŷk,n
(i)

|x̂k,n
(i) )

Pr (ŷk,n
(i)

|xk,n
(i) )

,                (2) 

where, ŷk,n
(i)

 is the predicted class, xk,n
(i)

 are the features in the original dataset and x̂k,n
(i)

 denotes the 

features in the modified dataset with top p% features zero-padded. Finally, the log-odds Mapper 

reports the log-odds score, which is used as one of the constraints for the constrained FL 

optimization task. 

D. Joint Recall and Explainability-Aware traffic Drop Classification 

Besides the log-odds score used for explainability, as shown in steps 3 and 4, we invoke the recall 

as a measure of the sensitivity of the FL local classifier, which we denote ρk,n, i.e., 

ρk,n =  π+ (Dk,n [ ŷk,n 
(i)

= 1])                 (3) 

Where, π+(Dk,n) defines the proportion of Dk,n classified positive, and Dk,n[∗] is the subset of 

Dk,n satisfying expression *. 
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In order to trust the traffic drop anomaly detection/classification, a set of AI SLA is established 

between the slice tenant and the infrastructure provider, where a lower bound αn is imposed to 

the recall score, while an upper bound βn is set for the log-odds score. 

This translates into solving a constrained local classification problem in iterations specified by 

the epochs as well as in FL rounds t(t = 0, … . , T − 1) i.e., 

min
W

k,n
(i)

1

Dk,n
 ∑ l (yk,n

(i)
, ŷk,n

(i)
(Wk,n

(i)
, xk,n))

Dk,n

i=1

,                        (4a) 

 

ρk,n  ≥  αn,                     (4b) 

θk,n  ≤  βn                    (4c)  

 

which is solved by invoking the so-called proxy Lagrangian framework [22], since the recall is 

not a smooth constraint. This consists first on constructing two Lagrangians as follows: 

 

ℒ
Wk,n

(i)  =
1

Dk,n
 ∑ l (yk,n

(i)
, ŷk,n

(i)
(Wk,n

(i)
, xk,n)) +  λ1 ψ1  (Wk,n

(t)
)

Dk,n

i=1

+ λ2 ψ2  (Wk,n
(t)

),                       (5a) 

ℒλ  = λ1 φ1  (Wk,n
(t)

) +  λ2 φ2  (Wk,n
(t)

),                                (5b) 

 

where φ1,2 and ψ1,2 represent the original constraints and their smooth surrogates, respectively. 

In this respect, the recall surrogate is given by, 

        ψ1 =
∑ yk,n

(i)
 ×min {ŷk,n

(i)
,1}

Dk,n
i=1

∑ y
k,n
(i)Dk,n

i=1

− αn                                (6) 

while ψ1 =  φ1 =  βn − θk,n since the negative logarithm is already a convex function. It also 

confirms that the solutions of the optimization problem are equivalent to those obtained if only 

the original constraints were used. 

This optimization task turns out to be a non-zero-sum two-player game in which the Wk,n
(t)

player 

aims at minimizingℒ
Wk,n

(i) , while the 𝜆-player wishes to maximize ℒλ.While optimizing the first 

Lagrangian w.r.t. Wk,n requires differentiating the constraint functions ψ1 (Wk,n
(t)

) and ψ2 (Wk,n
(t)

) 

, to differentiate the second Lagrangian w.r.t. 𝜆 we only need to evaluate ϕ1  (Wk,n
(t)

) and 

ϕ2  (Wk,n
(t)

) . Hence, a surrogate is only necessary for the  Wk,n-player; the λ-player can continue 

using the original constraint functions. The local optimization task can be written as, 

        wk,n∈∆
min  ℒ

Wk,n
(t)λ,||λ||≤Rλ

max                         (7a) 

       ℒλ                             (7b)Wk,n∈∆
min 

λ,||λ||≤Ɍλ

max  
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where thanks to Lagrange multipliers, the λ-player chooses how much to weigh the proxy 

constraint functions, but does so in such a way as to satisfy the original constraints, and ends up 

reaching a nearly-optimal nearly-feasible solution [23]. 

 

3.5 Results 

This section analyzes the proposed Closed loop EFL framework in detail. To build the 

explainability-aware constrained traffic drop classification model, we use feature attributions 

which is the pillar of this approach. After that, we present the impact of considering jointly the 

recall and log-odds metrics as constraints for optimizing the FL classification problem by 

showing results of FL convergence and log-odds score. Finally, we study the correlation 

between features attributions, observed predictions, and true predictions and draw some 

important conclusions. Specifically, to implement the modelTester and Explainer, we invoke 

DeepExplain framework, which includes state-of-the-art gradient and perturbation-

basedattribution methods [24]. It provides an attribution score based on the feature’s 

contribution to the model’s output, which we integrate with our proposed constrained traffic 

drop classification FL framework in a closed-loop iterative way. 

 

3.5.1 Parameter Settings and Baseline 

We consider below three primary slices eMBB, uRLLC and mMTC to analyze the proposed 

Explainable FL policy. Here, the datasets are collected from the BSs and the overall summary of 

those datasets are presented in Table II. We use vector β for the explainability lower bound 

threshold and α for the upper bound of recall score corresponding to the different 

slices. As a baseline, we adopt vanilla FL with post-hoc integrated gradient explanation. 

Table 2: Settings 

Parameter Description Value 

N #Slices 3 

K #BSs 50 

DNN Deep neural network size  2-hidden layers with 10 

nodes 

Dk,n #Local dataset size 800 samples 

T #Max FL rounds 50 

L #Local epochs 100 

Rλ #Lagrange multiplier radius Constrained: 10-5 

ηλ #Learning rate 0.02 

                         U #Total users (All BSs) 15000 

 

3.5.2 Results Analysis 

In this scenario, resources allocated to slices according to their traffic patterns and radio 

conditions while ensuring a long-term isolation via the constraints. 
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Figure 3-3:Analysis of FL training loss vs FL rounds of Proposed EFL with Lower bound of Recall score, α =[0.9, 

0.95, 0.95] and Upper bound of log-odds score, β =[−0.01,−0.01,−0.01] 

 

Figure 3-4:Analysis of Recall score with Lower bound of Recall score, α = [0.9, 0.95, 0.95] and Upper bound of log-

odds score, β = [−0.01,−0.01,−0.01] 

• Convergence: As depicted in Fig. 3, we can conclude that the proposed constrained EFL 

resource allocation model of the different slices has converged faster than the baseline 

unconstrained IG post-hoc case. 

 

• Sensitivity analysis: To analyze our proposed model’s sensitivity, we choose the recall 

metric, which is the rate of actual positive values for measuring the performance of our 

binary classification model. From Fig. 4, we can observe that the recall score of the 

proposed one for all slices is near the target threshold γ (i.e., around 0.88%), which is an 

acceptable value for operators and slices’ tenants. 
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                  (a) log-odds Score vs. top p %    

 

 

                                                                         (b) log-odds Score 

Figure 3-5:Analysis of log-odds score with Lower bound of Recall score, α = [0.9, 0.95, 0.95] and Upper bound of log 

odds score, β = [−0.01,−0.01,−0.01] 

• Trustfulness: In Fig. 5-(a), we observe the effect of changing the value top p% on the 

log-odds, considering proposed model for all slices. Also, we present a comparative 

analysis of log-odds score in Fig.5-(d) for both cases which proof the superiority of 

proposed constrain EFL model. So, the statistics of the log-odds score give us an 

approximate idea of our model’s reliability and trustworthiness. It shows that the log-

odds score is decreasing with respect to the top p% value, which conveys that our model 

is explainable and trustworthy in the training phase. 
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Figure 3-6:Correlation heatmap of eMBB slices based on attribution scores of features generated by XAI 

Furthermore, we demonstrate in Fig. 6, the correlation heatmaps of the proposed XAI method of 

the eMBB slice for further analysis. This approach helps us visualize the strength of relationships 

between different variables and, in our case, identify which feature variation impacts the most 

for SLA variation. To plot correlation matrix heatmap, we consider one matrix, Rk,n =

[ak,n, ŷk,n, yk,n], where, ak,n is the attribution score of features variable with dimensions  Dk,n × 

Q and ẑk,n 

is the predicted output variable with dimensions Dk,n × 1 and yk,n is the true predicted value with 

dimensions Dk,n × 1. From the heatmap we see that the third feature, which is the channel quality, 

has the most impact on the recall value. If the third feature increases, the recall value will increase 

and vice versa. 

 

3.6 Conclusion 

This paper has presented a novel closed-loop explainable federated learning (EFL) approach to 

achieve transparent zero-touch service management of 6G network slices at RAN in a non-IID 

setup. We have jointly considered explainability and sensitivity metrics as constraints in the 

traffic drop prediction task, which we have solved using a proxy-Lagrangian two-player game 

strategy. From the results, we conclude that the proposed EFL scheme is reliable and trustful 

compared to state-of-the-art unconstrained post-hoc FL. Finally, the heatmaps of the attributions 

correlation matrix are presented to showcase the features whose variation influences more the 

traffic drop. 

 

Here, we present a 6G RAN-edge network architecture, as well as preliminarily works and 

results, based on which we will proceed to implement our proposed idea. Our main aim is to 

include the XAI approach in our current implemented framework. Moreover, to gain more trust 

and reliability in our proposed solution, we may do a comparative analysis of existing XAI and 

show some related results. This approach is helpful and trustable for decision-making cases of 

any kind of critical service in the telecommunication field. Furthermore, it will be beneficial for 

any telecom operator or service provider to broaden their deployment and services, which is the 

future goal of the 6G network.  
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4 Intelligent QoS Aware Slice Resource Allocation with 

User Association Parameterization for Beyond 5G ORAN- 

based Architecture using DRL 

4.1 Introduction 

The 5G verticals can be categorized into 3rd generation partnership project (3GPP) de- fined use 

cases such as enhanced mobile broadband (eMBB), ultra-reliable 

low latency (URLLC), and massive machine type communication (mMTC). With various 

applications, such as Industry 4.0, smart cities, V2X, video streaming, online gaming, AR/VR, 

etc., the key performance indicators (KPIs) for the mentioned use cases can change. Such 

diversity in KPIs and requirements can be achieved with the use of new technology enablers. 

Furthermore, it introduces a sophisticated programmable architecture with a radio access network 

(RAN) intelligent controllers that provide an infrastructure-based abstraction of the networks as 

well as applications performing closed-loop control for RAN radio resource management 

(RRM). Network slicing is another important technology enabler, as it essentially allows to 

customize corresponding services [25] and to adapt to changing traffic requirements [26], [27] 

Due to the diversity and complexity of the criteria for future applications under the eMBB and 

URLLC use cases, this research focuses on these use cases and establishes a slice category for 

each of them separately. It is crucial to include its awareness [28], [29], [30], while allocating 

resources to end users. One of the challenges in handing resources to the RAN edge domain is 

traffic load variation in the wireless network environment. It affects optimal resource allocation, 

thereby reducing resource utilization and also causing System Level Agreement (SLA) violations 

as well as degrading the quality of service (QoS) of the end users. Slicing can be tuned to 

maximize resource utilization and QoS while isolating the performance of individual slices, even 

under traffic uncertainty. Fine-grained resource reconfiguration has extremely high 

computational complexity and is a sequential problem when it comes to network slice resource 

configuration [31], [32] 

Another difficult aspects of radio resource management at the RAN edge domain are in terms of 

connectivity preservation, rate control, offloading, etc. 

Moreover, due to the non-deterministic nature of wireless channel conditions, mobility, traffic, 

etc., as well as their inherent complexity, dynamic RRM is a challenging task. 

Thus, it becomes hard to construct models using conventional algorithmic approaches. On the 

other hand, model-free artificial intelligence (AI) techniques offer effective solutions that are 

gaining momentum, making them crucial candidates to optimize dynamic RRM [32]. 

Reinforcement learning (RL), one of the branches of AI, has been proven useful to deal with 

control problems. One of the most popular algorithms is deep reinforcement learning (DRL) and 

its variations. The optimization of resource allocation in radio access networks has been 

successfully accomplished with DRL algorithms, including DQN, DDPG, etc. [32]. DRL 

techniques have also been proposed to optimize power consumption and other aspects in different 

RAN architectures before ORAN, such as cloud RAN  [28]. The study presented in this paper 

focuses on integrating the aforementioned technological enablers and proposes deep Q-learning-

based techniques to implement effective, dynamic, optimal resource management at the RAN 

edge domain in order to provide end users that fall into various slice categories with high-Quality 

of Experience (QoE) and Quality of Service (QoS). 

file://///Users/suvi/Downloads/11
file://///Users/suvi/Downloads/11
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4.2 Related Work 

The ORAN Alliance is actively introducing a non-proprietary version of the RAN system that allows 

interoperation between network components by different vendors. In the past, intelligent solutions 

have also been proposed with proprietary architectures such as [28], [29], [30] but ORAN architecture 

introduces a sophisticated programmable approach with radio access network (RAN) intelligent 

controllers that provide infrastructure-based abstraction of networks. In the ORAN architecture, there 

are two separate components: the non-real- time RAN intelligent controller (non-RT RIC) and the 

near-real-time RIC (near-RT RIC), which reinforces the importance of the two control levels with 

different time granularities [33]. The ORAN report and specification include a comprehensive review 

of a number of use cases that are expected to be integrated with architectural elements to exchange 

data between various network components. One of the use cases describes how to integrate 

intelligence at the network’s edge in regards to radio resource management (RRM)  [34]. 

These components of the ORAN framework enable the integration of dynamic changes at almost 

real-time levels for radio resource allocation to end users. Slicing is one of the enablers that provide 

isolated resources. The customized network components are dedicated and isolated specific to each 

slice category  [35]. There are two different levels of resource allocation and management: intra- 

and inter-slice, which help manage RAN edge domain resources effectively. The authors in [8] define 

an optimization problem that aims to maximize user perceived throughput while minimizing packet 

delay violations by modifying the MAC scheduling algorithm’s parameters. It comes under the intra-

slice resource allocation category. This specific work is limited to traditional network architecture, 

proposing optimization for individual base stations and their underlying users. Such proprietary 

solutions can be used with ORAN architecture, but they lack the adaptation to utilize programmable 

ORAN-based infrastructure, which facilitates access to the information available at a centralized 

entity from other base stations or ORAN radio units (ORUs), which plays a crucial role in RRM 

decisions. 

Reinforcement learning (RL) is a very effective tool to achieve optimal decisions in complex 

environments, such as non-deterministic wireless networks, due to several aspects discussed in 

Section 1. Traditional table-based RL techniques are infeasible to handle large state and action spaces, 

as concluded in [5]. Whereas, deep reinforcement learning overcomes these limitations, like deep Q-

learning and some of its variations, such as dueling deep Q-learning (Dueling DQN) and deep 

deterministic policy gradient (DDPG). In the case of large and multidimensional discrete action 

spaces, branching architecture can be introduced in dueling Q networks, as presented in [11]. The 

researchers in [5] extend the given neural network (NN) for inherently discrete multi-dimensional and 

large action spaces to resolve the network slice reconfiguration problem. More computational 

resources are required to support such solutions. 

In state-of-the art work like  [36], researchers opt for the approach of using parallel and multiple DNN 

to make optimal decisions for user association with the base station. The solution proposed in [36] 

builds multiple DNNs and a number of additional DNNs with random input to increase exploitation. 

It has K DNNs, N random decisions, and K + N functions for calculating the Q value for a network 

with a certain number of users. So, DRL goes through all the layers in every run. Furthermore, each 

DNN is trained to learn the optimal decision for the entire user association (UA) matrix. It requires 

higher computation capabilities. Instead of this heuristic-style approach, the association decision can 

be parameterized to learn useful information about the network such as base station or ORU-based 

parameters. It is possible to establish various network slice resource allocation strategies by utilizing 

a variety of RL approaches [13], [14]. Dynamic network slice distribution techniques to improve 

performance for 5G- based bandwidth offerings is evaluated in [14]. It compares different algorithms 

for slice resource distribution. [13] uses approximation of resources and explores subchannel 

allocation that impacts differently with changes in multiplexing techniques. The solutions need to be 

formulated in such a way that they work efficiently and provide the intended outcome, independent of 

variations in techniques used in the wireless communication network underneath. 
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Unlike the metrics taken into account in [7], [15], [16], and other papers, the various slices in the 

network have different KPI thresholds to fulfill the defined QoS requirements. This poses a challenge 

in terms of achieving optimal system performance that is tackled in this paper by considering the 

variation in metrics or KPIs for different types of services that come under various RAN slice 

categories. Hence, the network should support distinct slice KPI-based reward definitions for 

individual end users to evaluate different service metrics. For instance, previous research [18], [19] 

considered different types of services based on varying bit rate and delay requirements, each of which 

took into account a distinct set of metrics for its requirements. Motivated by this work, the research 

presented in this paper considers the variation of QoS thresholds and KPI metrics as well as their 

impact while allocating resources to various slices in the formulation. This work does not prioritize 

only a specific service category as discussed in the above papers, such as constant bit rate. Instead, it 

defines weights to evaluate metrics of different slice categories included in reward function design of 

intelligent agents. Furthermore, each slice category has a separate intelligent agent that learns the 

importance of parameters and receives rewards based on weighted metrics and QoS thresholds for 

different slice categories. 

The proposed work discusses a system model based on ORAN architecture to deal with intra-slice 

RAN RRM decisions taken in real time for eMBB and URLLC slices. The problem is formulated to 

achieve optimal system performance and KPIs while satisfying the QoS of individual end users. In 

contrast to the work talked about in  [30], the proposed work intends to learn the importance of UA 

parameters with a unique approach for slice-based beyond 5G networks with multiple ORUs. The 

presented research work considers resource availability at all ORUs to serve the buffered traffic at 

users under specific categories and allocates the resources to achieve a high QoS. As indicated in 

introduction, traffic uncertainty affects RAN edge domain resource allocation [32] [31]. Hence, the 

formulation in this paper considers parameters reflecting network traffic load that have a significant 

impact on resource management. It takes into consideration the most crucial aspects of a wireless 

communication network in terms of end users and ORUs present in the network, as indicated in the 

problem formulation section. A resource allocation or reconfiguration problem can be written in such 

a way that the action space is constrained to a limited number of actions to which DQN can converge. 

It is also vital for intra-slice RRM in terms of time granularity of 1–10 ms for the near-RT RIC 

component of ORAN. 

The contributions of this work are as follows: 

1. The proposed algorithms deal with the association of user-ORU and serve the traffic load at 

individual users. In contrast to techniques discussed in the state of the art, the algorithm and 

intelligent agent sit at the remote edge, near-RT RIC component of the ORAN architecture. It is 

completely adapted to the ORAN architecture, which facilitates dynamic configurations of 

resources within a smaller timescale of 1–10 ms. It benefits from centralized access to the end-

user and ORU information for under- standing the factors affecting the respective decisions. 

2. The DQN approach iterates through all actions, and hence the proposed formulation ensures the 

limited number of action spaces that impact performance, reducing the convergence time. In 

addition to this, as it avoids large action spaces, the desired results are achieved without 

additional NN architectures or DQN variants, unlike [37], [38].  The computation capabilities 

required at the edge server, processing time, and training time are reduced compared to other 

approaches. This is vital to achieving smaller time scales for near-real-time decisions. Further- 

more, the action space defined in proposed MDP is independent of number of users in the 

network. 

3. Instead of learning the whole user association matrix as done in the state of the art, the proposed 

work distinguishes itself by parameterizing the user association. The agents learn the weights for 

each of the parameter crucial for UA decision. With this, the computational and memory 
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requirements can be reduced, as can the con- vergence time. A problem formulation is proposed 

that utilizes the intelligently selected weights and concludes the actual decision. It avoids the 

parallel and multiple DNN approaches used in several state-of-the-art works for UA. 

4. Based on how well individual users perform, each intelligent agent receives rewards. The reward 

function is de-signed to include deviation of the user performance from the QoS threshold value. 

Further these KPIs are weighted based on the slice category. The combination of these helps to 

get better performance compared to baseline approaches for KPIs like throughput, delay, BER, 

and overall system performance. 

4.3 Network Architecture 

 

 
Figure 4-1 ORAN based Network Architecture 

We consider a Radio Access Network (RAN) architecture as shown in Figure 4-1 based on the Open-

Radio Access Network (ORAN) standard, as defined by the ORAN specifications  [39]. The RAN 

comprises a number of users served by various network slices, each tailored to meet specific QoS 

requirements. The end users are associated with the ORAN radio unit (ORU), which acts as a 

transceiver radio unit with antennas and a low physical layer (PHY). This unit is further connected to 

the ORAN distributed unit (ODU) and the ORAN centralized unit (OCU), which operate at higher 

protocol layers. In this RAN architecture, each user is associated with and served by an ORU under 

the specific Network Slice Subnet Instance (NSSI) as defined by the ORAN standard  [34]. Each NSSI 

corresponds to requested services and has specific KPIs. The connectivity extends to ODU, OCU, the 

Service Management and Orchestration (SMO) system, and the core network, providing end-to-end 

connectivity. The RAN Intelligent Controller (RIC) plays a crucial role in making resource allocation 

and management decisions intelligently at the network’s edge. This increased openness allows for 

better decisions with more information on network parameters. 

The ORU is located at the local edge, while the ODU, OCU, and near-real-time (RT) RIC are part of 

the remote edge implementation at the edge servers, thus coming under multi-access edge computing. 

The ORU communicates with the user equipment (UE) over wireless channels, while vendor- specific 

open fronthaul interfaces connect the ORU to the remote edge for both uplink and downlink 

transmissions. For the practical implementation of the proposed algorithm, the channel state 

information (CSI) can be extracted from the database of the near-RT RIC at the edge server as reported 

by the E2 node via E2-CP. Therefore, we assume that perfect CSI is available for resource allocation 

and management at the edge server. Additionally, each ODU and OCU at the remote edge server 

connects to the SMO via O1 and A1 interfaces. The RAN communicates with core network entities 

via a fronthaul link, such as Ethernet, PLC, or optical fronthaul. Notably, the fronthaul link has an 



                 
  

25 
 

H2020-MSCA-ITN-2019-GA861165 

Deliverable D3.3 

  

H2020-MSCA-ITN-2019  

861165 - SEMANTIC    

H2020-MSCA-ITN-2019  

861165 - SEMANTIC 

upper bound in terms of maximum bits transmitted per second and is subject to limited core network 

resources assigned to each slice or network subnet at the edge or cloud, including computational 

capabilities. 

The RAN NSSI resource management is executed at two different control loop levels, namely non-

real-time (non-RT) and near-real-time (near-RT), in line with ORAN specifications  [39]. For each 

ORU, SMO provides a default RAN    resource configuration via the O1 interface as part of non- RT 

resource management. It includes radio resources, such as bandwidth, and computational resources 

reserved for different types of slices. Consequently, each RAN NSSI has a pre- allocated portion of 

bandwidth to serve the associated users. The performance of each network slice is analyzed based on 

the requested QoS configurations to achieve Service Level Agreements (SLAs). Intelligent agents are 

used in the proposed dynamic RAN resource management policies to make sure that radio resources 

are given to different types of slices in the best way and meet the QoS requirements set by the 

4.4 System Model 

As shown in the Figure 4-2, consider the ORAN network with a general set of users K = {1, · · · , K}. 

The users can request services under any of the two slice categories eMBB and URLLC. Each user 

has QoS requirements to be fulfilled based on the type of slice requested. These QoS requirements are 

expressed in terms of the minimum data rate to be achieved per user Rmin and the maximum allowed 

delay per user dmax where k ∈ K. We assume that all users from the same slice have the same 

minimum data rate and maximum delay requirements. Both the slices follow different traffic 

generation models due to the variation in services under these slices. The packet arrival rates for eMBB 

and URLLC slices follow periodic deterministic traffic model with specific packet arrival intervals. 

The size of packets and number of packets for each user vary based on the slice category and traffic 

distribution models, respectively. We assume it is the same for all users under the same slice category 

indicated for each user k as Sk and Lk, where k . The slice type as well as service requirements are 

mentioned for each UE in the UE database available at the remote edge. The set of ORUs denoted b y 

M serves these users. 

 

 
Figure 4-2 System Model 



                 
  

26 
 

H2020-MSCA-ITN-2019-GA861165 

Deliverable D3.3 

  

H2020-MSCA-ITN-2019  

861165 - SEMANTIC    

H2020-MSCA-ITN-2019  

861165 - SEMANTIC 

 

 
Figure 4-3 DRL Agent at Near-RT RIC (Remote Edge) 

 

To make the best use of resources within a slice, there is a separate intelligent agent for each RAN 

slice at the near-RT RIC. These agents learn how to better manage and assign radio resources within 

the ORU’s assigned bandwidth. Its objective is to associate users with ORU and schedule resources 

in an optimal way to achieve the required QoS performance. We consider downlink (DL) frequency 

division duplexing (FDD) transmission. Let the binary variable indicate the association between ORU 

and users in DL and can be expressed as matrix A. Each user will be associated with one of the ORUs 

for transmission at a given time for DL. As discussed earlier, there are two types of slices: URLLC 

and eMBB. These slices can be instantiated in any ORU. Each slice has a separate association matrix 

as with corresponding ORUs and users. It is also assumed that a user can only be connected to one 

ORU at a time, and a user may be assigned one or multiple physical resource blocks (PRBs) based on 

the traffic at each user. The bandwidth allocated to each ORU is divided among the slices instantiated 

in the ORU. Hence, ORU has a specific number of resources PRBm available, and the corresponding 

slice has a total PRBm,s number of PRBs available where s E, U  . We assume additive white gaussian 

noise for all users of independent circular symmetric natured complex random variables with a zero 

mean and σ2 variance. All users in the network follow random mobility model with speed V. As per 

5G new radio (NR), we only consider numerology µ = 0. 

 

 

Here, all the parameters indicated are with respect to a single TTI t; hence, for simplicity, the notation 

t is omitted from all variables unless the time duration is other than 1 TTI or a reference to a future or 

past TTI value is required. In DL, we use hk,m to denote the channel coefficient from ORU m to user 

k. The frequency-selective flat fading channel passes through Rayleigh fading in the wireless medium. 

Let us assume that Pm is the total transmit power of ORU. The proposed formulation aims to allocate 

and manage radio resources within each slice in a dynamic and optimal way such that all users satisfy 

the QoS requirements of requested services. The majority of existing proprietary and state-of- the-art 

based solutions address the importance of including intelligence at the inter-slice level. But it is equally 

crucial to include such intelligence in the intra-slice resource allocation to adapt to the diverse KPIs 

of future envisioned applications. The proposed work tries to fill these gaps while achieving optimal 

system performance. The SINR values γk,m are calculated as per equation (4) and they include effects 

such as path loss and shadowing based on the distance as well as the wireless channel quality between 

the user and ORU. Furthermore, it considers other interfering components in the network that affect 

the signal strength of the actual signal. The estimation of assigned PRBs is included in one of the 
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proposed algorithms, as prior knowledge of this parameter increases the KPI performance observed 

through several tests. The ability of ORU to serve traffic in a network is evaluated with a performance 

metric for ORU, τm defined as the ratio of buffer size in a given TTI t at ORU m to actual transmitted 

bits in the same TTI for the respective ORU. This metric is a type of queueing delay estimator that 

indicates how fast an ORU can serve the user. The metric τm is calculated as below: 

 

where Km is a set of users associated with m-th ORU, Bk is number of bits in buffer for each associated 

user and T Bk is number of bits transmitted for each associated user under ORU m at TTI t. Further, 

from the experienced value of τm,t in each TTI for each m-th ORU, we calculated global value. 

Initially, the global value is set to zero and updated with each TTI. Each experienced τm,t within each 

TTI is utilized to update the global τ gm,t as shown below. 

  

These parameters represent crucial aspects to be considered in the decision-making process of 

associating users with ORUs. The proposed formulation computes the indicated parameters to evaluate 

their importance and learn optimal decisions for the given state of the network environment. 

4.4.1 Intelligent QoS aware Resource Allocation (IQRA) 

The IQRA focuses on selecting the optimal association decision based on a combination of the above-

discussed parameters calculated in current TTI. It sits at near-RT RIC as an xAPP. Initially, a database 

is generated that stores all possible combinations of associations between the available users and ORUs 

of a specific slice. With this database as a reference, the algorithm can calculate and estimate the 

required parameters that contribute to association and scheduling decisions within the available slice 

resources. As discussed in the earlier section we indicate association with matrix A defined in equation 

(2). For a simplified approach in IQRA, the association is expressed in a vector form deducted from 

the same matrix A. Each vector element is the value of the associated ORU m, where the index of the 

vector element indicates the UE k. It is defined as given below. This definition reduces the number of 

possible combinations for associating UEs with ORUs. For given K and M there are I such 

combinations available. Each i-th combination represents a unique A matrix A as per equation (2). For 

each of these combinations, SINR γk,m,i is calculated as per equation (4).  Based on the range of 

calculated γk,m,i value in dBm, the modulation and coding scheme (MCS) such as QPSK, 16 QAM, 

64 QAM, etc. is selected for each user from the look-up table (LUT). The MCS scheme determines 

the modulation order Ok,i for each user in every i-th combination and the number of bits to be 

transmitted per resource element.  

 

As per 5G NR configurations, the number of symbols per slot, number of slots per subframe and total 

number of subcarriers can be determined. Hence, we can calculate bits per PRB for each user. From 

all these parameters, the required number of PRBs at user k can be estimated as follows using available 

number of bits in buffer at user k, Bk and the number of bits that can be transmitted at user k in each 

PRB, 
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Further, scheduling is performed based on the required number of PRBs for each user and the available 

bandwidth for each ORU. The proposed user association selection scheme is independent of the 

selected scheduler. In Section VIII, Proportional Fair (PF) scheduler is simulated. After scheduling, 

the estimate of assigned resources for each user is available. 

 

The estimation of assigned PRB and tau matrix for each i-th association contributes to the association 

decision AD as given below: 

 
 

The values for ws1, ws2 are learned and updated as described in Section 6 by intelligent agent for each 

slice. The optimal association decision is selected from all the available i combinations in the set with 

the following equation: 

 

 

4.4.2 Low Complexity Intelligent QoS aware Resource Allocation (LIQRA) 

This algorithm is proposed for the same objective in intra- slice RAN RRM with reduced computational 

complexity, which is crucial for some applications. The algorithm is constructed similarly, but evaluates 

association decisions in a different way. It takes association decisions individually for each user k and 

estimates the matrix A. The algorithm aims to make an intelligent association decision based on a 

combination of signal-to-noise ratio (SNR) and the global ORU metric. Once the association decision 

is taken and matrix A is estimated, SINR is calculated based on equation (4) and hence, MCS is selected. 

The values for ws1, ws2 are selected by an intelligent agent for each slice. Further, the required PRBs 

and other parameters for each user k are calculated as indicated in the earlier algorithm to schedule 

radio resources for end users. 

 

4.4.3 Key Performance Indicator  

Once the resources are allocated, the transmission takes place, and experienced key performance 

indicators such as achieved throughput, delay, and bit error rate (BER) are collected. These KPIs are 

stored, and the mean performance of the last TTIs for each user is forwarded to DRL. Additional KPIs, 

such as successful packet transmissions and packet drop rate, for each UE are also evaluated over the 

defined time interval. The throughput of user k is calculated by multiplying the assigned number of 

PRBs with bits per PRB selected for transmission in that TTI. The total delay experienced per user is a 
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combination of delays experienced by each packet in queue, transmission, and processing. The BER for 

each user k associated with m-th ORU in every t TTI for frequency selective flat fading channel is 

calculated as given in [40] The packet loss rate for every T TTIs is calculated as the ratio of packets 

discarded in given time interval to the total number of packets transmitted for each user.  

4.5 Proposed DRL based Intelligent Agents 

In this study, distinct intelligent agents for the slice types, eMBB and URLLC, are proposed. The UA 

decision is parameterized as discussed in above section. The DRL technique namely DQN is used by 

the intelligent agent to discover the significance of either the assigned PRB estimate or the SNR metric 

γ and the ORU metric τ for suggested strategies. Based on the state of the network environment at any 

given time, the deep neural network (DNN) determines the weights for each of these parameters and 

evaluates the optimum course of action. The DNN trains and learns the weight values for various 

network environment states and scenarios. IQRA and LIQRA are then given with these values for ws1  

and ws2 separately for each slice. The formulated solutions in the earlier section take into account the 

weights and evaluate a decision for ORU selection to serve the corresponding end user. This results in 

better performance for the KPIs compared to baseline and state-of-the-art solutions. The proposed 

Markov’s decision process (MDP) establishes the significance of the weights for UA parameters using 

DQN based intelligent agents. Each intelligent agent learns different values based on the impact of 

individual experienced user KPIs under each slice category.

 

4.5.1 Markov Decision Process  

The Markov Decision Process (MDP) for the intelligent agents based on the above formulation is 

defined with a tuple of   Ss, As, Rs , Γs   corresponding to state, action, reward, and discount factor, 

where subscript s indicates slice type for intelligent agents. The state space Ss  of the environment 

includes the current log normalized channel matrix HM×K, number of packets to be transmitted in the 

buffer  per  user  Pk,  and  the  distance  between  each  user  and ORU in the current TTI t. The state 

space definition remains the same for the different slices, as it represents the current state of the 

environment based on which the actions will be chosen by the intelligent agent. Different intelligent 

agents learn the importance of the UA parameters, which are specific and valid to the varying traffic 

flow for the services and user-specific to each slice. The number of actions is limited, and the agent 

learns the importance of each parameter to make an optimal decision for each slice separately. Several 

deep learning techniques and MDP designs come across issues while achieving convergence with a 

huge action space. The intelligent agents will learn the optimal way to associate user-ORU and 

eventually schedule the resources based on observation at a given point in time in an environment of 

wireless communication. The reward function is designed in such a way that the agent receives the 

reward for the user with a positive value equal to a fraction of exceeding QoS thresholds. Whereas, if 

any user fails to reach the QoS threshold, it is awarded a negative value equal to the amount of KPI 

that failed to reach the threshold. This reward is further normalized by the threshold values themselves. 

The total reward is the accumulated reward of each individual user divided by the total number of 

users. Both IQRA and LIQRA can use this definition of reward function. We can define slices 

dedicated to specific service and set the priorities of KPIs in reward function according to the 

requirements of that service. This ensures that algorithms achieve optimal system performance by 

keeping the service requirements in check and the quality of experience of each user maintained. Once 

the agent learns optimal weights for different states, the slices obtain desired and better individual user 

and system performance. The conducted research has analyzed various designs of reward functions to 

get better convergence and KPIs. We use deep Q learning methods from DRL algorithms. 

4.6 Simulation Setup  

The designed simulator is 3GPP-standard-compliant for wireless communication models. The network 

elements are defined and implemented in line with the ORAN architecture. The simulation set-up is 

based on ITU-R M recommendations for testing and verification. It is implemented in a Python 

environment. It uses OpenAI-gym, Keras, and Tensorflow modules to implement DQN-based agents. 

The intelligent DQN agents for both slices are tested and tuned by running multiple combinations of 

hyperparameters. The final selected values are mentioned in Table I. For each network slice, the 
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k 

number of users requested to be served and their QoS requirements are available in the database at 

near-real-time RIC. We have tested the proposed algorithms for a number of settings of QoS values 

based on different packet arrival rate (PAR). The simulation set up include packet arrival based on 

distribution models as well as constant bit rate (CBR). The number of packets available to transmit 

for each user is determined per TTI based on the mentioned models with different times of arrival in 

reference to the current time stamp. Similarly, for all UEs, the location update is calculated for each TTI 

based on the mobility model with a fixed 30 kmph speed for all users. 

As we have discussed in the system model, we assume 5G NR numerology 0 for all users, 

which corresponds to subcarrier spacing of 15 KHz and 12 subcarriers per PRB, hence the 

bandwidth of a single PRB WP RB is 180 KHz. Here, Wm,s bandwidth is allocated to each ORU 

under each slice category where it is serving both eMBB and URLLC slice users, and then the 

number of PRBs available at each ORU is given with Wm,s/WP RB as shown in table II. The symbol 

duration tsymb, number of symbols per slot, and other parameters are calculated based on a selected 

combination of numerology and subcarrier spacing. The pathloss and shadow- ing models are defined 

as a combination of dense urban and hotspot models given in table A1-5 of ITU-R M.2412-0 [41] 

and 

other communication model parameters are listed below. The ITU-R M specification [41] specifies 

the guidelines for the evaluation of radio interface technologies, specifically for simulation and 

testing purposes. The ORUs are placed around 50 meters away from each other, with their heights 

3-3.5 meters and maximum power levels are 200 mW (linear power of ORU for 24.25–27.5 GHz) 

according to A1-16 and A1-23 of  [41] compliant with ORAN standardization and the ITU 

framework to support network slicing  [42]. 

4.7 Results and analysis 

The results presented in this section are based on the simulation parameters for the environment 

and DQN agents that were previously described. The eMBB reward function, RE uses αE = 0.7. 

Whereas the URLLC reward function, RU uses αU = 0.4. Different values of αs have been tested 

for both slices. The algorithms are simulated for 3000 iterations of DRL and 30 seconds of simulation 

time. The figure shows the reward values of eMBB and URLLC slices for both the IQRA and 

LIQRA algorithms. Figure 4-4 and 4-5 show the value for reward for each run, where LIQRA and 

IQRA refer to reward values plotted with a sliding window of 100 iterations, and mean refers to the 

mean reward value. The reward function depends highly on KPI values such as throughput and 

delay. The instantaneous KPI values are calculated within each TTI, which is 1 ms in duration, and 

subsequently, individual reward values vary frequently. There- fore, the mean and sliding values of 

reward have been plotted to analyze the performance of both algorithms. We can see that convergence 

is achieved within the first 200–300 iterations of DQN. As seen in Figure 4-4 and 4-5 IQRA performs 

better for eMBB, and LIQRA has better reward values with URLLC slice. LIQRA has SNR and τ as 

UA parameters, whereas IQRA has an estimate of PRB assignment instead of SNR. This is weighted 

by ws1 and ws2  for both algorithms. In IQRA, the number of PRBs towards end users is given as one 

of the parameters to take an UA decision. This associates users with ORUs who can assign more PRBs, 

achieving higher throughput. The eMBB slice has more stringent throughput thresholds; hence, the 

more PRBs assigned to end users, the better throughput is achieved, resulting in better reward values. 

Whereas, for URLLC, latency requirements are more strict, with the first parameters being only SNR 

helps the algorithm assign users to ORU with better signal quality, giving more importance to the τ 

metric.  

Figure 4-6 to 4-9 shows the comparison for system performance be- tween the baseline approach, 

state-of-the-art (SOTA), referred to as DRLUA now onward, and the proposed algorithms for both 

slices. The baseline approach uses a simple maxSNR method for user-ORU association, whereas 

DRLUA uses a number of parallel DNNs approach along with DQN as proposed in [36]. All of them 

are implemented on top of proportional fair schedulers. Subfigure 4a and 4b show the Em- pirical 

Cumulative Distribution Function (ECCDF) for system throughput over DRL iterations for baseline, 

IQRA, LIQRA, and DRLUA. Both the proposed algorithms outperform the baseline and SOTA 

approaches. The resource allocation to end users is performed separately for each slice category. 
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Subfigure 4c and 4d show the ECCDF for latency for all four approaches in the simulation. 

 

Figure 4-5 reward performance for DRL Intelligent 

agent 

 

Figure 4-6 ECCDF of Throughput for eMBB 

Slice 

 

Figure 4-7 ECCDF of Throughput for URLLC 

Slice 

 

 

 
Figure 4-8 ECCDF of Latency for eMBB Slice 

 

Figure 4-9 ECCDF of Latency for URLLC Slice 

The algorithm makes decisions based on weighted values of UA parameters learned from intelligent 

agents. This allows the proposed methods to customize the importance of decision- making parameters 

specific to the current state of the wireless environment. For the eMBB slice, IQRA works

better among the 4 approaches, as it considers estimates of PRBs and the τ metric as explained earlier 

in reward convergence results. In simulation runs, we observe that IQRA selects higher values for ws1 

compared to ws2 in the majority of cases for eMBB slice. Hence, users are associated with ORUs 

by giving more importance to the quantity of available resources for transmission considering the 

allowed delay threshold for eMBB is larger, up to 10 ms. Whereas for URLLC, based on the network 

state, the importance lies with τ as the delay thresholds are more strict up to 2 ms. The algorithms 

allocate more resources to the users based on the QoS thresholds, availability of resources, and state of 

the network, including the current traffic load. It prioritizes and balances the decisions for UA. 

 

Figure 4-4 URLLC reward performance for DRL 
intelligent agent 
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(a )  User Throughput eMBB (b) User Throughput URLLC (c) User Delay eMBB (d) User Delay URLLC 

(e) User PDR eMBB (f) User PDR URLLC (g) User BER eMBB (h) User BER URLLC 

Fig. 5: User KPI for eMBB and URLLC slice with IQRA2 Algorithm  

Figure 5 shows KPI performances, namely, throughput, delay, packet drop rate, and bit error rate 

for each user under both eMBB and URLLC slices, respectively, using the LIQRA algorithm. Subfigure 

5a and 5b show experienced throughput for individual users under eMBB and URLLC slices. All users 

achieve throughput greater than the set QoS thresholds, which are 16 Mbps and 3.8 Mbps for E and 

U, respectively. Where subfigure 5c shows the delay values for users in eMBB slice. Here, all users 

experience a delay of less than 4 ms on average for all successfully transmitted packets. Subfigure 5e 

shows that all users in the eMBB slice have less than 0.5% packet drop rate. Only 3rd users 

experience an 0.9% packet drop rate, which is reduced to 0.7% as DRL agents make better 

association decision. Here, all users experience PDR less than 1% which is acceptable performance 

for eMBB services. Further, Subfigure 5d shows all users under URLLC slice experience an average 

delay less than 1 ms. The QoS threshold for URLLC, dmax is 2 ms; hence, users are associated with 

the respective ORU by giving more weight to τm which ensures the available buffer traffic at each 

UE can be served within the delay budget. Subfigure 5f shows that majority users experience PDR less 

than 1e−4. Subfigure 5g and 5h give insights about BER performance for users, which is less than 

1e−6 acceptable for all services considered under both slices. 

4.8 Conclusion 

From the results presented in the above section, we can conclude that the designed intelligent agents 

and proposed algorithms improved the performance of intra-slice resource allocation compared to 

baseline and SOTA techniques. The intelligence agent learns different weights ws1 and ws2 for each 

slice for the respective parameters affecting association decisions. From the comparison, we can see 

the proposed IQRA algorithm is more suitable for eMBB, whereas LIQRA performs better for URLLC 

slices. IQRA provides 11.5% and 7.42% improvement in throughput for eMBB slices compared to 

baseline and SOTA, respectively. While LIQRA provides 19.94% and 16.54% improvement in latency 

compared to baseline and SOTA approaches, respectively. LIQRA improves latency by achieving a 

minimum latency value of 45.5% less than compared to the baseline approach. It also improves 

throughput for eMBB slices by 6.7%. Whereas, IQRA improves throughput by achieving an increment 

in maximum throughput value up to 26.7% compared to the baseline approach. It also improves the 

minimum latency value to less than 8.2% compared to baseline. 
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5 Multi-Agent DQN with Sample-Efficient Updates for Large 

Inter-Slice Orchestration Problems 

5.1 Introduction 

Network slicing is a paradigm that promises to enable one of the key-characteristics envisioned for 

beyond 5G networks, the reliable support of a massive number of services with widely diverse Quality 

of Service (QoS) requirements [43]. It leverages network function virtualization and software-defined 

networking technologies to create virtual networks (“slices”) on top of the physical network 

infrastructure, which can be tailored to the needs of a specific service. The two main goals of slicing 

are: (i) the fulfilment of the desired QoS metrics (defined by Service Level Agreements (SLAs)); (ii) 

the efficient utilization of the limited network resources. Since the resource demands of the hosted 

slices are dynamically changing (due to traffic variations), dynamic slice orchestration is necessary to 

accomplish the aforementioned goals [3].  

A slice is a ``VNF chain'' comprising Virtual Network Functions (VNFs) and Virtual Links (VLs). 

Different optimization problems for network slicing have been considered in the literature, with the 

main representatives being (i) the placement (embedding) of slices onto the physical network (VNFs 

and VLs must be mapped to physical nodes and links respectively) [44]; (ii) the allocation of a physical 

node’s resources to the hosted slices (users) [45], [46].  

Initial attempts tried to tackle slice placement as an “one-shot” optimization problem, using mainly 

heuristic algorithms (due to non-polynomial complexity) [47]. More recent works formulated it as a 

Reinforcement Learning (RL) problem to account for the (unknown) changing VNF demands and the 

reconfiguration cost [48], [37]. However a number of challenges still remain: (i) most works focus on 

single domain setups [47] or simple VNF chains [37], and/or consider simple performance metrics 

[48], [37] (no end-to-end slice-specific Key Performance Indicators); (ii) RL based solutions have to 

deal with astronomically high action spaces [48], [37], due to the combinatorial nature of placing 

multiple VNFs upon multiple physical nodes (considering multiple slices/domains exacerbates this 

problem); (iii) data-efficient algorithms are required, given the scarce(r) availability of cellular 

network related data [48]. 

In the previous deliverable (D3.2, Section 4) we addressed challenge (i) by introducing a generic, 

queuing network based model that captures complex VNF chain topologies and end-to-end 

performance metrics (supporting multi-domain, multi-slice, end-to-end setups), and challenge (ii) by 

introducing a multi-agent algorithm of independent DQN agents (iDQN) that can reduce the action 

space complexity by many orders of magnitude compared to standard DQN. Nevertheless, as 

convergence can still be slow (requiring a large amount of training data), in this deliverable we 

introduce two additional mechanisms to store to and select from the experience replay buffer (for more 

efficient parameter updates), which aim to improve the training speed of DQN agents (challenge (iii)). 

Finally, as this deliverable focuses on performance evaluation, we validate our multi-agent DRL 

scheme by extensive simulations, using real traffic data. We summarize below the main contributions 

of this work:  

(C.1) We provide a model that attempts to capture the problem of dynamic slice embedding and 

reconfiguration supporting a multi-domain setup and diverse, end-to-end SLAs (Section 5.2.1).   

(C.2) To deal with the prohibitive state and action complexity of tabular RL algorithms, we propose a 

novel scheme based on independent DQN agents (iDQN): the DQN (Deep-Q Network) component 

implements approximate Q-learning, based on simple, generic Deep Neural Networks (DNNs) for 

value function approximation, radically reducing state space complexity; the independent agents then 

tackle the equally important issue of exploding action complexity arising from the combinatorial 

nature of embedding multiple VNFs per slice, multiple slices, over multiple domains and computing 

nodes therein (Section 5.3.2).  
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(C.3) We introduce a prioritized experience replay [49] on top of standard DQN (either single-agent 

or multi-agent) as well as a mechanism that stores some additional information per experience to 

reduce the number of computations during parameter updates (Section 5.3.3). 

(C.4) We validate the proposed multiagent DQN scheme with all the above speed up extensions 

(iDQN+) in a large scale scenario, using real traffic data, and confirm its superior performance 

compared to vanilla iDQN and static baselines (Section 5.4). 

5.2 RL framework for inter-slice orchestration 

5.2.1 Environment: A B5G system 

The system model was introduced in the previous deliverable D3.2 (Section 4), where the reader can 

refer to for a more detailed description. Figure 5-1Figure 3-1 outlines its main components, the 

physical network and network slices, as well as the notation, in a toy example1. 

 

Figure 5-1. Toy example exhibiting the main components of our environment. 

Slice orchestration. The assignment of each VNF/VL to a physical node/link2 (at every timestep t) 
determines both the slice and the network performance. Slice performance deteriorates by SLA 

violations while network performance by unnecessary use of network resources. Hence, a VNF might 

“migrate” to another node at a next time unit with a view to improve system's performance. But 

migration of VNFs does not come for free; a reconfiguration cost should be taken into account (e.g. 

management overhead, delays leading to monetary penalties [46], [37]). A simple example is given in 

Figure 5-2. In Figure 5-2-(a), the initial embedding of slices (at time t) for the toy scenario of Figure 

5-1 is depicted. The aggregate resource demand of the hosted VNFs at physical node v0 (zv0
= dn0

k0 +

dn0

k1 ) is close to bv0
; the node is congested and causes high delays (and probably SLA violations) for 

both slices k0 and k1. At the next timestep t + 1 (Figure 5-2-(b)), VNF n0 of slice k1 migrates to v1 

to avoid SLA violations, in exchange with i) a reconfiguration cost;  ii) a node activation cost (server 

v1 is turned “on” from the idle state). 

 

 
1
 We stress that the above system model goes well beyond the depicted toy example, being able to capture VNF chains with probab ilistic 

routing between VNFs, loops (i.e. traffic potentially going through the same VNF more than once), etc. See [81] for more details.  
2 A VL can be mapped to a path (its load is imposed to each traversed link).  
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Figure 5-2. Slice embedding example. 

Following, we define two of the most important slice-related quantities, the configuration and demand 

vectors, which we will be frequently using throughout this section: 

Configuration c ∈ 𝒞: mapping of all VNFs to physical nodes3 at time t (e.g. in Figure 5-2 (b), the 

configuration is: c = (cn0

k0 , cn1

k0 , cn0

k1 , cn1

k1) = (v0, v3, v0, v3), where cni

kj
 indicates the host node of VNF 

ni, slice kj).     

Demand d ∈ 𝒟: denotes the resource demands of all hosted slices at time t (e.g. in Figure 5-2 (a), 

the demand is: d = (dn0

k0 , dn1

k0 , dn0,1

k0 , dn0

k1 , dn1

k1 , dn0,1

k1 )). 

Queuing Model. The impact on the performance of slices when multiple VNFs are assigned to the 

same physical node and their aggregate resource demand is close to or exceeds the node's capacity is 

captured using a queuing model. Each physical node/link is modelled as an M/G/1/PS queue [50] 

(such models tend to capture well the characteristics of proportionally fair schedulers, commonly used 

for resource scheduling [51]). Then, the average delay experienced by any VNF/VL hosted on 

node/link vi is given by the function4: 

fvi

delay(c, d) =
1

bvi
− zvi

(c, d)
       (1)  

 

where  zvi
(c, d) = ∑ ∑ dnl

kj

nl∈𝒩kj
∪ℒkj

kj∈𝒦

⋅ xnl,vi

kj        (2) 

 

In (2), 𝒦 is the set of slices, 𝒩kj
, ℒkj

 the sets of VNFs and VLs of slice kj respectively, and xnl,vi

kj
 a 

binary variable (1 if VNF/VL nl of slice kj is hosted by physical node/link vi). For complex slices the 

end-to-end delay can be calculated by a Jackson network type of analysis. For a simple slice (VNF 

chain) the corresponding end-to-end delay Fki

delay(c, d) is the sum of delays across all host nodes and 

links along its path (e.g. in Figure 5-2 the delay of slice k0 is: Fk0

delay(c, d) = fv0

delay(c, d) +

fv0,2

delay(c, d) + fv2,3

delay(c, d) + fv3

delay(c, d)). 

 

 

 
3 To simplify our discussion, and w.l.o.g., we consider the mapping of VLs is predetermined. Routing variables could be easily included in 

our framework. 
4 When demand exceeds capacity, (\ref{eq:queuing_delay}) is extended to include a large penalty.  
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5.2.2 States, actions, and rewards 

State space 𝒮. 

The state of the system at timestep t consists of (i) the assignment of all VNFs to physical nodes; (ii) 

the resource demands of all VNFs/VLs (both are necessary to calculate the instantaneous reward, to 

be elaborated shortly). 

Definition 1 (State) s = (c, d), s ∈ 𝒮 = 𝒞 × 𝒟 

Remark: The above state space 𝒮 grows exponentially fast with slice and VNF number. What is worse, 

continuous traffic demand (as will be the case for the dataset used in our simulations [52]) essentially 

renders vanilla RL methods (e.g., Q-learning) inapplicable, even for toy scenarios. To this end, 

approximate RL methods (e.g., using a Deep Neural Network (DNN) to encode the input) cannot be 

avoided for such problem. We are using the popular DQN architecture [53] to this end. 

Action space 𝒜. 

The agent's action is the configuration to be applied in the next timestep (combinatorial). Note that we 

use an apostrophe to denote all quantities of t + 1. 

Definition 2 (Action) a = c′, a ∈ 𝒜 = 𝒞 

Action complexity example: In a physical network with V = 10 nodes and K = 10 slices (one VNF 

per slice), the number of possible actions is |𝒜| = VK = 1010! Standard DQN algorithms [53] are 

designed for small action spaces. To deal with this problem (on top of state space complexity), we use 

a multi-agent DQN architecture, that can reduce action state complexity by orders of magnitude. 

Reward function ℛ. 

We consider three individual costs that determine the total cost performance of the system. Given 

some observed state s, an agent action a, and the next state s′, these costs are the following. 

-Type 1 cost: SLA violation. A penalty is paid when the end-to-end delay Fki

delay(s′) perceived by a 

slice ki is higher than qki
  (defined by the SLA). This may take any suitable form (linear, quadratic, 

etc.). We give as an example the linear form: 

g1(s′) = ∑ (Fki

delay(s′) − qki
)

ki∈𝒦

⋅ 1
{Fki

delay
(s′)>qki

}
       (3) 

-Type 2 cost: Reconfiguration. Migrating VNFs from their host servers causes overhead and might 

incur delays, leading to SLA violations [46], [37]. 

g2(s, a) = 1/2 ⋅ ∑ ∑ ∑ |(xnj,vl

ki )
′

− xnj,vl

ki |

vl∈𝒱nj∈𝒩𝓀𝒾
ki∈𝒦

,       (4) 

where 𝒱 is the set of physical nodes. 

-Type 3 cost: Active nodes. It is the number of physical nodes that are “on” (hosting at least one VNF). 

The idle servers/VMs can be turned off (or set to sleep mode) and save energy/free up resources [54]. 

g3(a) = ∑ 1
{∑ ∑ xnl,vi

kj
nl∈Nkkj∈K ≥1}

vi∈𝒱

       (5) 
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The reward obtained is the negative weighted sum of the individual costs5 (3) -(5): 

r = (w1 ⋅ g1(s′) + w2 ⋅ g2(s, a) + w3 ⋅ g3(a))       (6) 

5.3 Approximate RL schemes 

As is evident by the problem model, the inter-slice orchestration problem at hand is characterized by 

(i) unknown future resource demands; and (ii) delayed rewards (e.g. if the demand of a VNF is 

predicted to increase soon and stay high for a while, paying now a reconfiguration cost for its migration 

to a less busy server could lead to high future rewards). While this is the standard “playground” of 

RL, vanilla algorithms like Q-learning [55] are unable to handle the problem at hand, due to the 

prohibitive state and action spaces even in relatively small setups. We will first describe here the basic 

DQN and iDQN (multi-agent DQN) solutions we use as our starting point to deal with state and action 

complexity, respectively, then proceed with the proposed experience replay buffer heuristics. 

5.3.1 DQN 

To deal with the combinatorially large (potentially infinite) state space, an approach that has found 

significant success recently in many applications (e.g., games) is to learn a parameterized function 

Qθ(s, a) (with the function commonly being a DNN), that approximates the original Q function (using 

much fewer learnable parameters than a complete state-action table). The advantage of a DNN is the 

automatic encoding of important features that would otherwise be problem dependent and tough to 

track (e.g. the discretization of continuous traffic demands). However, simply adding a DNN forfeits 

the convergence guarantees of tabular RL algorithms and leads to unstable learning in most practical 

scenarios. The recent Deep Q-Network (DQN) algorithm [53] is shown to often overcome these issues 

and will be our starting point. 

A DQN agent is equipped with two DNNs, the so-called policy and target networks (Qθ(s,⋅) and 

Qθ′(s,⋅) respectively), which take as an input the state and output the Q values of all possible actions 

(configurations). Moreover, the visited transitions are stored in a replay buffer (ℬ). In Figure 5-3 we 

outline the main steps of the DQN algorithm. 

Drawbacks. DQN does not scale well for very large action spaces. In our case, larger problem size 

means (a) (combinatorially) more outputs/actions for the DNN, (b) harder argmax operations, (c) 

slower exploration of the action space.   

 

 

 

 

 

 

 

 

 

 

 

 
5 Note that the goal of the RL agents is to maximize the accumulated rewards, and this is why we introduce a negative sign in 

Def.~\ref{def:reward} (in our problem we want to minimize the accumulated cost).  
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Figure 5-3. Main algorithmic steps of DQN. 

5.3.2 iDQN 

To deal with the above bottlenecks (a) and (b), we employ a multi-agent scheme to decompose the 

combinatorial action space into smaller subspaces. To this end, we consider one independent DQN 

agent (iDQN) per VNF, responsible only for placing the specific VNF on the physical network. The 

introduced modifications are outlined in Figure 5-4. 

 

Figure 5-4. Modifications of iDQN algorithm with respect to DQN. 

With iDQN we have managed to reduce memory requirements by avoiding the combinatorial output 

layer of the single-agent DQN scheme. Also, we have replaced the computationally expensive 

maximization operations of (7), (9), with much less expensive operations over 𝒜j. However, there is 

still much room for improvement regarding convergence speed and sample efficiency (drawbacks (b) 

and (c) of Section 5.3.1), which are crucial characteristics for a practical algorithm. 

5.3.3 DQN+/iDQN+ 

The last step towards a more scalable solution is to improve convergence speed by (i) smarter picking 

of minibatches; (ii) DNN parameter updates with fewer computations (we introduce the “lazy” 

computation of the TD-target). Following, we demonstrate how DQN must be modified to incorporate 

these two speedup tricks (DQN+), which can be readily applied in the multiagent scheme (iDQN+) to 

further improve its convergence speed (especially in large scale scenarios).    

Prioritized experience replay. We have observed that as the action space in our problem grows 

larger, actions with similar effect are over-represented in the replay buffer, while potentially more 

effective actions are under-represented (slowing down convergence). To this end, we employ a  
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prioritized experience replay [49], which prioritizes transitions with a larger TD-error to boost sample 

efficiency. Figure 5-5 outlines the modifications on top of the DQN algorithm. 

 

Figure 5-5. Modification 1 of DQN+ algorithm with respect to DQN. 

In (10), αrep is a hyperparameter that determines the amount of prioritization (αrep = 0 leads to uniform 

sampling while αrep = 1 to full prioritization), while βrep in (13) determines the amount of 

compensation applied by weighted importance sampling (to balance the bias introduced by 

prioritization). 

Lazy computation of TD-target. The maximization operation in (9), required for every sample of the 

minibatch, becomes very expensive as the action space grows larger. To reduce the number of such 

computations we introduce a second modification (Figure 5-6). 

 

Figure 5-6. Modification 2 of DQN+ algorithm with respect to DQN. 

This trick offers important real time gains, as DQN+ performs M times less computations per timestep, 

compared to DQN, for the calculation of the TD-target (in DQN+, (15) is calculated only for the 

visited transition while in DQN for each one of the M samples).  

5.4 Simulation results 

In this section, we have three main goals: (i) to establish that Q-learning based approximate algorithms, 

either single-agent or multi-agent, are able to obtain close to optimal solutions (i.e. ones found by 

tabular Q-learning or offline Policy Iteration), yet with much higher convergence speed as the problem 

size increases; (ii) to quantify the convergence speed gains offered by the speedup heuristics proposed 

in section 5.3.3 on top of of DQN and iDQN algorithms; and (iii) to validate our proposed enhanced 

multiagent solution (iDQN+) in a realistic large scale setup. For (i) we use small enough scenarios (to 

obtain the optimal policy) with synthetic data (for sensitivity analysis), while for the rest we use real 

data from the Milano dataset [52], in more realistic topologies with much larger state and action 

baseline complexity. 

Policies. Below we list various algorithms that we will use in our validation, together with some key 

parameters for each. Note that not all algorithms will or can be used in every scenario (e.g., the first 

two take more than days to converge, except in the smaller Scenario 1). 

 

 

• Policy Iteration (PI): Returns the optimal policy in an offline fashion and is applicable when the 

traffic dynamics are Markovian and known [55]. 
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• Q-Learning (QL): This is a standard RL tabular method [55] that returns the optimal policy (for 

discrete traffic demands). 

• DQN: This is the centralized approximation method (Section 5.3.1), using a DNN of 3 layers and 60 

neurons per layer. We set its replay memory size to 5000 timeslots, the target update period to 500 

timeslots and the minibatch to 32, since these parameters performed well in a variety of tested 

scenarios.  

• iDQN: This is the proposed multi-agent approximation method (Section 5.3.2). Each agent (one 

agent per VNF) is a DNN of 3 layers and 60 neurons per layer. It uses the same parameter values as 

the DQN. 

• DQN+/iDQN+: These variants are the above DQN/iDQN but with all the speedup heuristics we have 

proposed in Section 5.3.3. 

• Group-all: A reference static policy, whose main goal is to merely minimize the active nodes cost 

(5); it places all VNFs in one server and does not react to changing demands (hence no reconfiguration 

cost either), but possibly suffering from frequent SLA violations. 

• Split-all: A sister reference policy to Group-all which instead aims to minimize SLA violations (3) 

only, trying to “spread out” VNFs among all available servers as much as possible (no reconfiguration 

cost either). 

• Random: It chooses randomly one of the possible configurations at each timestep. 

Note that the discount factor was set to γ =  0.9 for all RL/MDP algorithms.   

5.4.1 Scalability of tabular vs approximate RL schemes 

In this first part, we focus on small scenarios, and synthetic Markov traffic (defined below), so that 

theoretically optimal algorithms (Policy Iteration and Q-learning) can be used as baselines (converge 

in reasonable time). Our aim is to carefully study how the increase of problem size (K: number of 

slices, V: number of servers) affects the convergence speed of the approximations, as well as their 

attained cost, compared to the optimal. For this reason, in terms of cost performance we use PI and 

QL as benchmarks (both find the optimal cost), and check how DQN and iDQN perform against them 

(i.e. how far from the optimal). And moreover, we observe the convergence speed of QL against DQN 

and iDQN. 

Network Setup and Markov Traffic. We consider a single domain physical network and two 

scenarios (a small and a larger) with different problem sizes, i.e., V and K. Without loss of generality, 

we assume each slice consists of one VNF. The demand of each VNF dk(t) ∈ ℬ = {0,1} (“ON/OFF”) 

and evolves, independently to the other VNFs, as a Markov process with transition probability matrix: 

Pk = [
0.98 0.02
0.02 0.98

]       (16) 

This captures a very simple scenario where each slice has bursty traffic periods followed by long 

silence periods, not necessarily coinciding, to better illustrate the optimality of the chosen actions, as 

well as the performance of static heuristics. Using (16) we generate a training and a testing dataset, 

with duration 2  ⋅  106 and 8  ⋅  104 timeslots respectively. The algorithms are trained and tested 10 

times in the respective datasets with different initial random seeds.  

Scenario 1. Here, we consider a PN with V = 2 servers and K = 4 slices to be configured (4096 state-

action pairs).  

-Convergence Speed (Figure 5-7): We depict the average cost value (over 10 runs, on the y-axis) as 

a function of time (counted in terms of iteration, on the x-axis), for QL, DQN, and iDQN. The two 

main points to observe are the following: (i) the approximate solutions, DQN and iDQN both achieve  

 

similar costs with the theoretically optimal QL (this has been confirmed for a variety of other small 

scenarios as well); (ii) yet, it is impressive that QL already takes quite a few more iterations to 

converge, even in such a small scenario (this is not so surprising since the size of the Q-value table is 
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already 256 by 16); (iii) since the action space in this scenario is quite small, there are no additional 

convergence advantages by IDQN (compared to DQN), as expected. 

 

Figure 5-7. Convergence plot (Scenario 1: Markovian traffic – small problem size) 

-Cost performance (Figure 5-8): We depict the cost per time-slot in the testing dataset via a box plot 

(for all the algorithms outlined in the beginning of the Section). The main observations are: (i) the 

approximations (DQN and IDQN) have no problem finding the optimal solution in such a scenario; 

(ii) even on this tiny scenario, we get a 20% improvement compared to the simple static heuristics, 

and a 60% compared to the random policy. 

 

Figure 5-8. Box plot of cost in the testing dataset (Scenario 1: Markovian traffic – small problem size). 

-Take-away message 1: DQN based approximate policies are able to find good quality solutions 

(certainly better than static reference policies), and quite faster than tabular Q-learning. 

Scenario 2 (Figure 5-9). We increase the problem size (w.r.t. Scenario 1) and assume a physical 

network with V = 3 servers that hosts K = 7 slices (1010 state-action pairs). While this is still not a 

very large scenario, in practice, policy iteration and Q-learning already collapse, due to their memory 

and computation requirements; we therefore omit these from the respective plot. So, Figure 5-9 is 

similar to Figure 5-7, yet we only compare DQN and IDQN. An important observation here is that 

IDQN now presents considerable convergence time improvements (roughly 10x) compared to DQN; 

this is reasonable as the action space in this scenario is growing large (2187 actions per state). 

Nevertheless, the solution quality (average cost achieved) is comparable. 

-Take-away message 2: for realistic size scenarios, even centralized DQN will collapse in terms of 

convergence time. 
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Figure 5-9. Convergence plot (Scenario 2: Markovian traffic – larger problem size). 

 

5.4.2 Performance gains of DQN+/iDQN+ 

Having established that approximate schemes can increase convergence speed without significantly 

impacting the quality of the obtained policy, here we aim to validate that the speed up heuristics 

proposed in Section 5.3.3 can further boost convergence speed in a realistic setup. We will also 

introduce real traffic data to drive the demand, as well as a full-fledged multi-domain physical 

network, coupled with the end-to-end queuing delay SLAs to further induce realism into our scenarios. 

VNF demands. We import them from the Milano dataset [52]. Due to their continuous values the state 

space is infinite for all RL algorithms of this section (thus only approximate algorithms can be directly 

employed). Milano timeseries consist of 8928 samples per base station (1 sample every 10 minutes), 

so we map to each VNF the normalized “internet” traffic demand of a different base station. W.l.o.g., 

we assume that VL demands are zero. We use the first 4464 Milano samples for training and the rest 

for testing, hence the duration of each training/testing episode is 4464 timesteps. 

System Setup. The physical network consists of 2 domains, each of them comprising 2 nodes (servers) 

respectively. On top of it there are 4 slices (simple VNF chains) with 2 VNFs each (one VNF per 

domain). This results in 256 possible actions for single-agent DQN.  

Training. Each algorithm is trained over 12 episodes, while this procedure is repeated over 20 

individual runs with different random seeds (to get averaged results). 

Impact of proposed speed up mechanisms on DQN/iDQN. In Figure 5-10, we compare the 

performance of vanilla DQN/iDQN algorithms with respect to their DQN+/iDQN+ counterparts. 

There are 4 main observations to take away, (i) iDQN is again confirmed to converge faster than DQN 

in this real traffic scenario (due to the additional approximation in action space); (ii) the speedup 

heuristics of DQN+/iDQN+ improve their convergence speed compared to their vanilla counterparts; 

(iii) the speed improvement for DQN is much larger than the speed improvement for iDQN, due to its 

larger action space (the gain for iDQN is expected to become more prominent in larger scenarios); 

(iv) iDQN+ is the fastest among the tested algorithms (but only slightly faster than DQN+). 

-Take-away message 3: The proposed speedup heuristics on top of DQN/iDQN can offer significant 

convergence speed gains. 
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Figure 5-10. Convergence plot in real traffic small scale scenario. 

5.4.3 Validation in large scale scenario 

Having validated the gain offered by the proposed speed ups in a relatively small scenario, in this 

last part we examine the performance of iDQN+ in a larger setup. Since DQN cannot be used as a 

baseline here (due to the prohibitive action space size), we go back to the simple static heuristic 

policies (split-all, group-all), or even random actions, as minimum benchmarks to assess the obtained 

dynamic policies.  

 

System Setup. The physical network consists of two technological domains, comprising 9 and 3 

nodes (servers) respectively. On top of it there are 10 slices (simple VNF chains) with 2 VNFs each 

(one VNF per domain). This results to 2 ⋅ 1014 possible actions for single-agent DQN.  

 

Training and Testing. Each algorithm is trained over 22 training episodes, while this procedure is 

reperated for 10 individual runs with different random seeds. All the obtained policies are evaluated 

over 1 testing episode (we rollout the policy with no exploration and record the mean cost). 

 

Cost performance. The results of the testing phase are given in the box plot of Figure 5-11. This 

plot compares the performance of iDQN and iDQN+, also including the static baseline policies split-

all, group-all, and random. The main observations are: (i) iDQN+ performs 2x better than the split-

all policy, which was the best of the static baselines; (ii) even the worst policies obtained by iDQN 

(with or without the speed up extensions) in all 10 runs perform much better than the static baselines; 

(iii) iDQN+ demonstrates 20% cost reduction compared to iDQN (converges faster as it achieves 

lower cost in the same amount of training steps); (iv) the performance gain of iDQN+ is more 

prominent in this larger scenario, compared to Section 5.4.2. 

 
Figure 5-11. Box plot of cost in the testing dataset (large scale real traffic scenario). 

-Take-away message 4: iDQN+ was validated to improve the cost performance of iDQN by 20% in 

a large scale scenario. 
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5.5 Conclusion 

In this work we introduced a flexible RL framework for slice embedding (reconfiguration) supporting 

an inter-slice setting, multiple domains, and diverse end-to-end SLAs. We proposed a novel DRL 

scheme based on independent DQN agents that radically reduces both the state and action complexity, 

while we additionally introduced two heuristic mechanisms to speed up its convergence and thus 

improve scalability. Finally, we validated the performance of the proposed solution through extended 

simulations using a real traffic dataset. 

 

6 Summary 

In summary, this deliverable focuses on the evolution of wireless networks beyond 5G, emphasizing the 

importance of zero-touch AI-driven automation in telecommunications. It introduces an Explainable 

Federated Deep Learning (FDL) model for predicting dropped traffic in 6G networks, particularly in the 

Radio Access Network (RAN). The model incorporates closed-loop automation and Explainable AI (XAI) 

principles, addressing the complexity of network slicing. The study underscores the significance of the XAI 

approach for transparent and trustworthy decision-making in critical telecom services. The paper also 

presents a 6G RAN-edge network architecture and preliminary results, setting the foundation for 

implementing the proposed idea. The ultimate goal is to enhance trust and reliability in the 6G network 

deployment, making the approach valuable for telecom operators and service providers aiming to expand 

their services in the evolving landscape. 

Further this deliverable presents comprehensive study on radio resource management for RAN edge domain 

at inter- and intra-slice level. It concludes several state-of-the-art work and proposes algorithms with novel 

approach to take resource allocation decision by parameterizing the crucial components related to scheduling 

and association. Several DRL techniques has been studied and a novel approach using DQN is presented for 

near-real time resource allocation which is implemented as xAPPs at near RT RIC of ORAN based 

architecture for beyond 5G and 6G networks. The algorithm presents quality of service (QoS)-aware intra-

slice resource allocation that provides superior performance compared to baseline and state of the art 

strategies. The slice-dedicated intelligent agents learn how to handle resources at near-RT RIC level time 

granularities while optimizing various key performance indicators (KPIs). The study provides novel and 

intelligent resource allocation approach which are essential to support futuristic applications under 6G 

network.  

Finally, in Chapter 5, this deliverable focuses on data-driven dynamic embedding of end-to-end slices in 

beyond 5G networks. It introduces a generic, queuing network-based model that captures the inter-slice 

orchestration setting, supporting complex VNF chain topologies and end-to-end performance metrics. To 

deal with the astronomically high action spaces emerging in such settings, it explores multi-agent DQN 

algorithms that can reduce action space complexity by orders of magnitude compared to standard DQN, 

providing a scalable solution. Moreover, as the training of DQN agents is not particularly data-efficient, 

which can hinder their practical application given the scarce(r) availability of cellular network related data, 

this deliverable investigates two mechanisms to store to and select from the experience replay buffer, aiming 

to speed up training The scalability and the convergence speed gains of the proposed scheme are validated 

through extensive simulations using real traffic data. 
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