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1 Executive summary 

This deliverable incorporates some initial proposed optimization frameworks and algorithms towards 

optimal network slicing, contributed by the SEMANTIC ESRs, in the framework of WP3 

(Optimizations for integrated access/X-haul and end-to-end slicing). The proposed solutions consider 

an end-to-end slicing perspective as well as novel technologies, like integrated access/X-haul and 

traffic steering. Each Chapter of this report focuses on different aspects of network slicing and 

corresponds to the work of a different ESR. It includes a state-of-the-art Section (optionally), and then 

introduces the system model utilized, the problem formulation, a proposed solution, and possibly some 

preliminary results. In Chapter 3, the slice resource allocation problem at the RAN-Edge domain is 

examined, and a zero-touch Federated Learning solution combined with Explainable AI techniques is 

proposed. Chapter 4 tackles the dynamic slice embedding problem, introducing a generic framework 

suitable for multi-domain networks and end-to-end slice KPIs, while a multi-agent deep 

Reinforcement Learning approach is proposed. Finally, Chapter 5 provides a framework for slice 

resource allocation and management in the RAN-Edge domain, proposing distributed deep 

Reinforcement Learning solutions at different timescales to optimize the resource utilization and 

distribution.  
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2 Introduction 

The standardization and deployment of the fifth generation (5G) of mobile networks is ongoing 

during the last few years. Enhanced mobile broadband (eMBB), massive machine-type 

communications (mMTC), and ultra-reliable and low latency communications (uRLLC) are three 

major communication scenarios. Concurrently, both academia and industry have focused on 

research for beyond 5G (B5G) and towards 6G networks. These networks are not limited to the three 

major use cases of 5G [1], they are envisioned to support more vertical application scenarios, having 

unique features and specific capabilities (e.g., latency, peak date rate, etc.). The parallel provisioning 

of such heterogeneous vertical services urges a highly flexible, adaptive, and intelligent network 

architecture, directly contradicting the “one-size-fits-all” network design paradigm.   

6G networks are expected to support KPI requirements that are an order of magnitude higher 

compared to 5G. On the report of a recent white paper [2], 6G KPIs require 1 Tbps peak data rate, 

around 20-100 Gbps user experienced data rate, 0.1 ms end-to-end latency, 10 million devices/km2, 

and near 100% coverage, which in turn demand the adoption of several new technologies [1]. 

Moreover, there will be new unique features such as a space-air-ground integrated network (SAGIN), 

which will ensure global coverage and on-demand services [3], diversified services with stringent 

QoS requirements, and ubiquitous intelligence penetrating every corner of the network (spanning 

from end-users, the network edge, to the remote cloud). 

One of the key enablers for supporting various different services with stringent Quality of Service 

(QoS) requirements is Network Slicing (NS). This technology allows for the flexible management of 

services, by creating customized virtual networks ("slices") on top of the physical network 

infrastructure [4], [5], and it is based on network function virtualization (NFV) and Software Defined 

Networking (SDN). More specifically, NFV allows the creation of virtual resources and network 

functions for flexible resource management, while SDN provides a global view of network 

infrastructure and simplifies centralized network management for network optimization. A network 

slice instance is a complete logical network that includes a set of network functions and the 

supporting network resources, and it can meet specific network characteristics required by a service 

instance [6], as mentioned in 3GPP TR 28.801 [7].  

Optimal slicing aims to: (i) ensure slice performance isolation (achieve at least a minimum QoS 

defined by the Service Level Agreement (SLA)); (ii) ensure efficient utilization of the limited network 

resources. This is extremely important, since the better utilization of the available network 

resources, the more slices can be hosted with high reliability, and the higher the revenue for the 

network operator. Or, from a different point of view, the less resources required to host a given 

number of slices with high reliability, the less the operating expenses and capital expenditures. [8], 

[9].  

Different “slicing problems” have been considered in recent related literature [10], however there 

are two main versions of the problem that we will examine in this deliverable. The first is the 

allocation of a physical node’s resources among the hosted slices [11], [12]. The other is the problem 

of slice embedding, where slices are represented as graphs of Virtual Network Functions (VNFs) and 

Virtual Links (VLs), that need to be mapped among physical nodes and links respectively, while 

satisfying each slice's resource demands [13], [14]. In Chapters 3 and 5 we will address the former, 

by allocating CPU resources to CU (Central Unit) VNFs and radio resources to end users in the RAN-

Edge domain respectively, while in Chapter 4 we will address the latter. A survey of the related 

literature focusing on the slice embedding problem has been already provided in the previous 

deliverable (D3.1), while some additional related work regarding the resource allocation problem 

will be presented in the corresponding Chapters.  
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Despite interesting initial attempts to tackle these problems, a number of challenges arising from the 

vision of B5G/6G slicing remain. Beyond 5G networks will involve slices whose VNFs will be spread 

across multiple technological (and administrative) domains; this immensely increases the 

optimization complexity due to the combinatorial nature of placing multiple (correlated) VNFs, for 

multiple slices, among multiple computation nodes. It also requires suitable modelling of end-to-end 

KPIs. Moreover, the majority of the parameters that affect the performance of each network 

component (and thus hosted VNFs) are often unknown a priori, dynamically changing, and 

sometimes even non-stationary, rendering traditional static and centralized optimization methods 

(whether discrete, continuous, or stochastic) problematic, if not altogether inapplicable. This is why 

multi-agent Deep Reinforcement Learning (DRL) is employed in Chapters 4 and 5 to tackle these 

problems.  

6G networks are expected to intelligently support a massive number of simultaneous and 

heterogeneous slices. Consequently, the challenges of scalability and sustainability will affect the 

deployment of artificial intelligence (AI)-driven zero-touch management and orchestration (MANO) 

of end-to-end (E2E) slices. In this respect, ETSI has standardized the zero-touch network and service 

management (ZSM) framework, where a reference architecture and AI-based closed-loop 

management automation have been proposed [15]. However, the traditional centralized approach 

for monitoring, analyzing, and controlling the underlying raw data will be problematic, because it 

suffers from significant overhead, delay, and a single point of failure. On the other hand, 

decentralized approaches ensure scalability, low data exchange and, therefore, more security. In this 

view, distributed artificial intelligence (AI) approaches, particularly Federated Learning (FL) 

techniques can play a vital role in monitoring scattered data across the network while reducing the 

computational costs and enabling fast local analysis and decision. Nonetheless, both the 

convergence delay and computation cost often limit FL capability under non-IID real network data. 

These aspects are going to be considered in the FL approach proposed in Chapter 3. 

Furthermore, in real deployment, both the operator and the slice tenant need to understand the 

behavior of the FL model, in order to trust AI’s decisions. Thus, Explainable Artificial Intelligence (XAI) 

empowered Federated Learning (FL) is getting a lot of attention due to the end-user trust and 

secured operation. This approach, which can build an advanced AI-based trust model, ensure hassle-

free processes, and improve security to the 6G heterogeneous networks, will be also examined in 

Chapter 3. 
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3 Transparent Zero-touch Resource Allocation solution for 

6G NS 

3.1 State of the Art 

3.1.1 ZSM & ML in 6G 
As stated in the Introduction, to automatically orchestrate and manage network slices, or more 

specifically network resources, across different domains, along with ensuring the end-user's QoE and 

QoS, a comprehensive scope of both Zero-touch Network and Service Management (ZSM) and 

Network Slicing (NS) techniques are currently being studied [16], [17]. Machine Learning (ML) is one 

of the key enabling technologies that many ZSM frameworks are adopting to bring intelligent 

decision-making to the network management system and improve the overall network performance. 

Specially designed and trained ML models can effectively manage and control physical and virtual 

network resources to mitigate slice Service Level Agreements (SLA) penalties or runtime costs. 

However, it is very challenging to design such purpose-specific ML. 

The work of [18] proposes a cognitive management architecture with ML techniques following the 

Monitor, Analyze, Plan and Execute over a shared Knowledge (MAPE-K) control loop for real-time 

accurate bandwidth prediction for mobile users. On the other hand, [19] demonstrates and proposes 

an ML model to empower self-organizing networks (SONs) for traffic management after clustering 

and forecasting cellular traffic. But all these above-mentioned works leave a vital gap in 

systematizing, organizing, and automating all the necessary steps and actions for building efficient 

ML models in the ZSM framework, although they have an important contribution towards ML-based 

ZSM in 5G. In this aspect, the authors in [18] proposed a novel unified methodology approach to 

Cognitive Network & Slice Management in virtualized multi-tenant 5G networks with the application 

of ML, and this methodology can handle various runtime costs such as unnecessary slice resource 

overprovisioning and the lack of desirable overprovisioning. Additionally, various works [16], [20], 

[21], [22]  have studied VNF placement, service monitoring, NF/VNF profiling etc., by considering 

NFV MANO systems to achieve the ZSM goals. Both ZSM and NS will play an essential role in fulfilling 

the requirements of, not only 5G, but also B5G and 6G. Still, now, there is not enough work 

considering this fact. We have a plan to work on this site. 

3.1.2 Federated learning in ZSM 
A fast growing area of machine Learning (ML) that has recently attracted a lot of attention from the 

research community is Federated learning (FL). The reason is that traditional ML schemes are cloud-

centric and require the data to be sent and processed in the central server, which becomes 

impractical nowadays if the amounts of data traffic from heterogeneous services are massive since 

it causes high transmission delay and hinders user privacy also. Such schemes are also not suitable 

for the network slicing case because network slices are isolated, making it challenging to collect data 

and build centralized machine learning models that identify the performances of network slices. 

Consequently, it is crucial time to adopt a decentralized learning approach to handle efficiently 

distributed network slices.  

However, to achieve the vision of Zero Touch Management (ZSM) of network slices in 5G, FL can 

consider analyzing the network slice performances and auto-build the decision mechanisms to react 

accordingly as mentioned in [23]. The work of [24] aims to design centralized and federated deep 

learning techniques for predictive horizontal and vertical autoscaling with QoS- prioritized and cost-

prioritized objectives in multi-domain networks. But FL performs poorly due to the non i.i.d. data 

samples, which need to be considered for the next-generation network.  
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It is expected that 5G and 6G networks will accommodate an enormous number of data traffic by 

2030. Thus, an automatic data processing framework needs to be developed, to allow edge learning. 

Furthermore, FL can meet 6G requirements [25] such as massive ultra-reliable low latency 

communications (mURLLC), scalable architecture, human-centric services etc. FL can also handle the 

resource allocation, signal detection, and user behavior prediction problems in the upcoming 

networks [25]. Hence, to meet and solve the challenges of developing 6G networks with their unique 

features and associate requirements, FL with ZSM and NS can be studied. 

3.1.3 Explainable AI in 6G 
Another open challenge with AI is the lack of transparency, interpretability, and trust compared to 

the other simple and self-explaining traditional models. The reason for this, the AI model is a black 

box that is not human-understandable. So, from the real-time deployment point of view, it is a 

barrier to further development. Even if any AI or deep learning model can specify complex model 

patterns or perform better, such models are not preferable for any critical decision-making services 

[26]. 

Besides, the critical characteristic of 6G is that it is "human-centric" [27] rather than "machine-

centric." It signifies that all the corresponding "smart things" in the 6G network will function 

intelligently for humans as a colossus but as a smart black box. In this respect, Explainable AI (XAI) 

provides methods and techniques to properly explain the AI system and its decisions, which helps 

gain the trust of the human in the loop.  

XAI is the key, especially for 6G stakeholders, such as service providers, end users, and permitted 

auditors. Many research works exist on XAI and B5G/6G separately but compared to that. Compared 

to that, only some research works consider and explore XAI's potential for implementing AI-enabled 

human-centric B5G/6G networks. Also, full automation of ZSM based framework depends on the 

interpretability and transparency of the AI/ML models to enhance trust and transparency for people 

to use 6G networks [28]. Some research works of XAI [29], [30], [31] demonstrate the importance of 

explainability for the management and orchestration of various services in the beyond 5G networks. 

Evaluating the performance of XAI models, the paper [32] introduces some basic metrics for 

continuing the research on XAI for any field. 

 

3.2 Explainable FL for Trustworthy Slice Resource Allocation 

In this Section, we will present an Explainable Federated learning approach to the FL optimization 

task for resource allocation for 6G network slicing with non-IID datasets at the RAN-Edge domain. 

The main contributions of this paperwork are: 

 To deal with the FL resource provisioning task at the local analytic engines (AEs), we 

formulate the corresponding SLA-constrained optimization problem under the proxy-

Lagrangian framework and solve it via a non-zero sum two-player game strategy.  

 To ensure trustability under massive slicing, we mainly focus on explainable AI (XAI) for 

transparent zero-touch service management (ZSM) of 6G network slices. 
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3.2.1 Proposed Network Model 

 

Figure 3-1: Decentralized closed loops (CLs) architecture 

We propose an explainability-aware federated learning for slice-level resource allocation in 6G and 

characterize the performance thereof in terms of both SLA and XAI metrics. The adopted network 

architecture is depicted in Figure 3-1 which shows a 6G Edge-RAN where distributed analytic engines 

(AEs) are placed along with the corresponding monitoring systems (MSs). Its topology follows a per-

slice central unit (CU)/distributed unit (DU) functional split, wherein each transmission/reception 

point (TRP) is co-located with its DUs. Basically, each CU consists of a monitoring system (MS) and an 

AI-enabled slice resource allocation function called analytic engine (AE) in a closed loop way. 

Each CU 𝑘 (𝑘 = 1, … … . , 𝐾)  runs as a virtual network function (VNF) on top of a commodity 

hardware, and performs slice level RAN key performance indicators data collection to build its local 

datasets for slice  𝑛 (𝑛 = 1, … … , 𝑛) i.e., 𝐷𝑘,𝑛  = {𝑥𝑘,𝑛 

(𝑖)
 , 𝑦𝑘,𝑛

(𝑖)
}𝑖=1

𝐷𝑘,𝑛 , where 𝑥𝑘,𝑛 

(𝑖)
 stands for the input 

features vector while 𝑦𝑘,𝑛
(𝑖)

 represents the corresponding output. 

Table 1: Dataset Features and Output 

Feature Description 

OTT Traffics per TRP Apple, Facebook, Facebook Messages, 
Facebook Video, Instagram, Netflix 

CQI Channel quality indicator reflecting the average 
quality of the radio link of the TRP. 

MIMO Full-Rank Usage MIMO full-rank spatial multiplexing in (%) 

Output Description 

CPU Load CPU resource consumption (%) 
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3.2.2 Network Configuration 
We consider below three primary slices to analyse the proposed Explainable FL policy, defined as 

follows: 

 eMBB: Netflix, Youtube and Facebook Video, 

 Social Media: Facebook, WhatsApp and Instagram, 

 Browsing: Apple, HTTP and QUIC 

Here, the traffic associated with each mentioned slice is the sum of the underlying OTTs' traffics 

that collects from the hourly traffics of the slices for five days, and the overall summary of those 

datasets are presented in Table 1. 

3.2.3 SLA Violation-Aware Federated Resource allocation 
Here, we will give brief overview of FL optimization for resource allocation framework which is going 

to be modified in time according to our needs.  

As we know, an SLA is established between slice 𝑛 tenant and the infrastructure provider so that any 

assigned resource to the tenant should not exceed a range   [𝛼𝑛, 𝛽𝑛]  with a probability higher than 

an agreed threshold 𝛾𝑛  .This corresponds to solving a statistically constrained local resource 

allocation problem with both empirical cumulative density function (ECDF) and complementary ECDF 

(ECCDF) constraints at FL round  𝑡 (𝑡 = 0, … … … … . , 𝑇 − 1), i.e. 

min
𝑊

𝑘,𝑛
(𝑖)

1

𝐷𝑘,𝑛
 ∑ 𝑙 (𝑦𝑘,𝑛

(𝑖)
, �̂�𝑘,𝑛

(𝑖)
(𝑊𝑘,𝑛

(𝑖)
, 𝑥𝑘,𝑛))

𝐷𝑘,𝑛

𝑖=1

, 

     

s.t. 𝐹𝑥𝑘,𝑛   ~ 𝐷𝑘,𝑛(𝛼𝑛) =    
1

𝐷𝑘,𝑛
𝟙 (�̂�𝑘,𝑛 

(𝑖)
<  𝛼𝑛)  ≤  𝑦𝑛, 

                         �̂�𝑥𝑘,𝑛   ~ 𝐷𝑘,𝑛(𝛽𝑛) =    
1

𝐷𝑘,𝑛
𝟙 (�̂�𝑘,𝑛 

(𝑖)
>  𝛽𝑛)  ≤  𝑦𝑛 

which is solved by invoking the so-called proxy Lagrangian framework [33]. This consists of first on 

considering two Lagrangians as follows: 

   ℒ
𝑊𝑘,𝑛

(𝑖)  =
1

𝐷𝑘,𝑛
 ∑ 𝑙 (𝑦𝑘,𝑛

(𝑖)
, �̂�𝑘,𝑛

(𝑖)
(𝑊𝑘,𝑛

(𝑖)
, 𝑥𝑘,𝑛)) +  𝜆1 𝜓1  (𝑊𝑘,𝑛

(𝑡)
)

𝐷𝑘,𝑛

𝑖=1 +  𝜆2 𝜓2  (𝑊𝑘,𝑛
(𝑡)

), 

ℒ𝜆  = 𝜆1 𝜑1  (𝑊𝑘,𝑛
(𝑡)

) + 𝜆2 𝜑2  (𝑊𝑘,𝑛
(𝑡)

), 

where  𝜑1,2 and 𝜓1,2 represent the original constraints and their smooth surrogates, respectively. 

Specifically, the indicator terms are replaced with Logistic functions. This optimization task turns out 

to be a non-zero-sum two-player game in which the 𝑊𝑘,𝑛
(𝑡)

-player aims at minimizing ℒ
𝑊𝑘,𝑛

(𝑖)  , while the 

𝜆-player wishes to maximize ℒ𝜆 [Lemma 8] [33]. While optimizing the first Lagrangian w.r.t. 𝑊𝑘,𝑛 

requires differentiating the constraint functions 𝜓1 (𝑊𝑘,𝑛
(𝑡)

)  and 𝜓2 (𝑊𝑘,𝑛
(𝑡)

)  , to differentiate the 

second Lagrangian w.r.t. 𝜆 we only need to evaluate 𝜙1  (𝑊𝑘,𝑛
(𝑡)

) and 𝜙2  (𝑊𝑘,𝑛
(𝑡)

) . Hence, a surrogate 

is only necessary for the  𝑊𝑘,𝑛 -player; the 𝜆 -player can continue using the original constraint 

functions. Via Lagrange multipliers, the 𝜆-player chooses how much to weigh the proxy constraint 

functions but does so in such a way as to satisfy the original constraints and ends up reaching a nearly 

optimal nearly feasible solution [33]. 
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3.3 Preliminary Works 

In this section, we provide our preliminary work and associated results. We consider our previous 

work as a baseline for accomplishing our target research work.   

Based on our proposed SLA-aware FL optimization for the resource allocation approach mentioned 

above, we have designed a novel SLA-driven stochastic FL policy for selecting a subset of AEs 

participating in the FL task at each round. It enhances the convergence time while maintaining the 

exact computation cost no matter how many AEs increase over the network and also ensure 

scalability under massive slicing. 

 

Figure 3-2: policy for AE selection Proposed 

3.3.1 SLA-Driven Stochastic Federated Learning Policy 
We aim to select only a subset of active  𝐴𝐸s in each FL round to optimize the federated learning 

computation time and the underlying resource consumption. In this regard, we propose an SLA-

driven stochastic 𝐴𝐸 selection policy. Upon the completion of the training at round  𝑡, each 𝐴𝐸(𝑘, 𝑛) 

evaluates the generalization of its FL model using a typical test dataset �̃� of size �̃�---that is common 

to all monitoring systems of slice 𝑛--- and calculates the so-called SLA violation rate as, 

𝑣𝑘,𝑛  =
1

𝐷�̃�

  ∑ 𝟙 [(�̃�𝑘,𝑛
(𝑖)

<  𝛼𝑛) ⋃ (�̃�𝑘,𝑛
(𝑖)

>  𝛽𝑛)]

𝐷�̃�

𝑖=1

 

Next, at each FL round 𝑡, as presented in Figure 3-2, all the participating AEs send their SLA violation 

rates to the server which generates a probability distribution using  𝑠𝑜𝑓𝑡𝑚𝑖𝑛 function as, 

𝜋𝑘,𝑛  =   
exp {−𝑣𝑘,𝑛}

∑ exp {−𝑣𝜌,𝑛}𝐾
𝜌=1

  , 

Wherein 𝐴𝐸𝑠  with low SLA violation are given a high probability of FL participation to drive the 

model convergence, but also AEs with high SLA violation might take part in the FL training with a low 

probability to guarantee the generalization that could stem from their datasets. Based on the 

probability distribution, only a subset of  𝑚 < 𝐾 𝐴𝐸s is drawn at each FL round to  

𝐴𝐸𝑘1,𝑛
(𝑡)

 , … … … … … , 𝐴𝐸𝑘𝑚,𝑛
(𝑡)

 ~  { 𝜋1,𝑛, … … … , 𝜋𝐾,𝑛| 𝐴𝐸1,𝑛 … … … . , 𝐴𝐸𝐾,𝑛} 

Thus, the 𝐴𝐸𝑠  would have stochastically participated in the FL task while avoiding the concurrent 

training at each round. And the model averaging at round   𝑡 is performed as, 

𝑊𝑛
(𝑡+1)

=  ∑
𝐷𝑘,𝑛

𝐷𝑛
𝑘∈{𝑘1 ,….,𝑘𝑚}

 𝑊𝑘,𝑛
(𝑡)

 

Where 𝐷𝑛  is the sum of datasets sizes over all slice 𝑛′𝑠  𝐴𝐸𝑠. 
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3.3.2 Parameter Settings and Baseline 
We consider three primary slices to analyze the proposed FL policy, mentioned in detail at the section 

2.4.2. We use vectors 𝛼, 𝛽 for the resource bounds, and 𝛽 for the thresholds corresponding to the 

different slices for a particular resource. The parameters settings are mentioned in Table 2.  

Table 2: Settings 

Parameter Description Value 

N #Slices 3 

K #AE 100 

m #Selected AEs 50 

𝐷𝑘,𝑛 #Local dataset size 1000 samples 

T #Max FL rounds 30 

L #Local epochs 160 

𝑅𝜆 #Lagrange multiplier radius Constrained: 10-5 

𝜂𝜆 #Learning rate 0.02 

 

3.3.3 Simulation Results 
 

 

Figure 3-3: FL training MSE loss vs. number of FL rounds with and without proposed policy for 𝑚 = 50 and 𝐾 = 100. SLA 
bound, with 𝛼 = [0, 0, 0], 𝛽 = [4, 7, 10] and 𝛾=[0.01, 0.01, 0.01]  in constrained case 
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Figure 3-4: SLA violation rate with  𝛼 = [0, 0, 0], 𝛽 = [4, 7 , 10] % and  𝛾 = [0.01,0.01,0.01] 

In the simulated scenario, resources at CU-level are dynamically allocated to slices according to their traffic 

patterns and radio conditions (average CQI, MIMO full-rank usage).  

Observing Figure 3-3, we can conclude that for all slices, policy-based FL converges faster than without 

policy, since the AEs with lower violation rate have more chances to participate in the training. Noted that 

even if, we increase the total number of AEs as the number of slices and CUs increases in the physical 

network, which ensures scalability. Supporting results will be added in our future deliverables. 

Finally, to investigate the trade-off, the CPU SLA violation rates of the slices are shown in Figure 3-4, where 

it is observed that the policy-driven constrained FL presents significantly lower violations compared to 

FedAvg while preserving the performance of constrained FL without policy (i.e., around 1 %).  

Note that we choose FedAvg as our baseline, where resources are optimized in the unconstrained scenario.  

3.4 Conclusion 

Sixth-generation (6G)-enabled massive network slicing is a strong enabler for the expected pervasive 

digitalization of the vertical market. In such a context, artificial intelligence (AI)-driven zero-touch 

network automation should present a high degree of scalability and sustainability, especially when 

deployed in live production networks wherein the collected monitoring datasets at different points 

are non-independent and identically distributed (non-IID).  In this contribution, we present a service-

level agreement (SLA)-driven stochastic policy to guarantee a scalable and fast operation of 

constrained federated learning (FL)-based analytic engines that perform statistical slice-level 

resource provisioning at RAN-Edge in a non-IID setup. The simulated scenario demonstrates the 

superiority of the solution in reducing SLA violation, convergence time and computation cost 

compared to different FL baselines, showcasing thereby a higher scalability.  

However, to achieve our actual objectives for developing transparent FL resource allocation for 6G 

network slicing, we will consider our preliminary work as a primary framework and work based on 

this to fulfil our goals. 
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3.5 Future Research Direction 

Here, we present a 6G RAN-edge network architecture, as well as preliminarily works and results, 

based on which we will proceed to implement our proposed idea. Our main aim is to include the XAI 

approach in our current implemented framework. Moreover, to gain more trust and reliability in our 

proposed solution, we may do a comparative analysis of existing XAI and show some related results. 

This approach is helpful and trustable for decision-making cases of any kind of critical service in the 

telecommunication field. Furthermore, it will be beneficial for any telecom operator or service 

provider to broaden their deployment and services, which is the future goal of the 6G network.  
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4 Dynamic end-to-end slice embedding in beyond 5G 

networks 

In this Chapter we will focus on the problem of dynamic slice embedding, assuming that resource 

allocation per node is performed by a given scheduling algorithm (e.g., proportionally fair sharing), 

whose impact is captured by our model. In Section 4.1, we provide a system model that supports a 

multi-domain setup and diverse end-to-end SLAs. The proposed model is generic, so it can potentially 

incorporate flexible functional split and Integrated Access and Backhaul, by considering suitable 

physical layer VNFs at the Radio Access Network (RAN). In Section 4.2, we first discuss how such 

problems can be optimally solved, in theory, with tabular Reinforcement Learning (RL) algorithms, 

and more specifically with Q-Learning (QL) [34], even under, a priori, unknown demand dynamics for 

each slice. While such methods are inapplicable in realistic problem sizes, due to the high state and 

action complexity, they are useful in providing a baseline for approximate ones, in small enough 

setups, as well in grounding more advanced algorithms with good theoretical properties [35]. 

Building on top of QL, we demonstrate how the Deep-Q-Network (DQN) algorithm [36] can be 

applied in our problem to reduce the prohibitive state complexity, by approximating the Q-function 

with a simple Deep Neural Network (DNN). Then, to tackle also the high action space complexity 

faced by centralized RL algorithms in the examined problem, we propose a multi-agent scheme 

based on multiple DQN agents.  

4.1 System model 

In this section, we present our system model. The main components are the physical network and 

the virtual networks on top of it. We also discuss the modelling of end-to-end KPIs, the control we 

have over the system and the cost associated with a control decision. Since there is plenty of notation 

to keep track of, we will use the example shown in Figure 4-1 to explain the various quantities 

involved, throughout the problem setup. 

4.1.1 Physical Network and slices 
As is common in related literature, we represent both the underlying physical network (PN), and the 

VNF chains (“slices”) to be deployed on top of it, by graphs (e.g. [13], [14]). 

Physical Network: 

It consists of physical nodes (servers or routers) interconnected by physical links, and is represented 

by a weighted undirected graph 𝑮 = (𝑽, 𝑬), where 𝑽 is the set of nodes and 𝑬 is the set of links. It 

possibly comprises multiple (technological or administrative) domains. 

Each physical node and link is characterized by its capacity: 

 Node capacity 𝒃𝒗: It is the capacity of (physical) node 𝒗 to host VNFs of that domain (it could 

also be 0 for some nodes, e.g. for routers). This capacity could be resource blocks, CPU cores, 

containers, etc., depending on the domain. 

 Link capacity 𝒃𝒆 : It is the capacity of edge (or path) 𝒆  between two PN nodes (e.g., 

bandwidth). 

In the example of Figure 4-1, there are 3 domains, Cloud RAN (CRAN), Multi-access Edge Computing 

(MEC), and Core Network (CN), and each of them comprises a number of nodes where VNFs could 

be executed (CRAN: 3 servers, MEC: 2 servers, CN: 3 servers) and associated capacities 𝒃𝒗. The 

servers are connected through physical links (of capacity 𝒃𝒆), or paths comprising multiple links and 

nodes of the network. 
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Figure 4-1: Graphical illustration of the system model. The embedding of 2 slices onto the network is depicted. 

Network Slices: 

We assume that a set of slices 𝐾 (K in total) must be hosted on top of the PN. We slightly generalize 

the common view of a slice, in related 5G literature, and depict a slice 𝑘 as follows. Each Slice (“VNF 

chain”) is represented by a directed graph 𝑯𝒌 = (𝑵𝒌, 𝑳𝒌) of VNFs (set  𝑵𝒌) that model the various 

processing tasks required by the flows of this slice, and directed (virtual) links (set 𝑳𝒌) indicating the 

order of how these tasks are applied. 

A simple example is Slice1 of Figure 4-1, which consists of 2 VNFs and the flows must first traverse 

VNF1 to receive some initial processing, and then VNF2 for the remaining processing required in 

order to provide the corresponding service to the end-users. However, our model can be fairly 

generic, allowing for both loops (e.g., flows passing by the same VNF multiple times), as well as 

probabilistic routing of flows (e.g., to capture the scenarios where not all flows of a slice require all 

VNFs in the same order). An example of such a chain is Slice2 of Figure 4-1, where a percentage of 

flows from VNF1 proceed to VNF2 directly, while the rest must pass through VNF3, possibly going 

back to VNF1 as well. 
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Each VNF and Virtual Link (VL) requires some amount of resources from the Physical Network, and 

these resource demands are dynamically changing according to the user generated traffic: 

 VNF demands 𝑑𝑘,𝑛: Each VNF 𝑛 of slice 𝑘 is associated with a resource demand 𝑑𝑘,𝑛(𝑡) that 

is a function of time 𝑡 (time is slotted), and will be imposed on the PN node where the VNF 

is executed. 

 VL demands 𝑑𝑘,𝑙 : Similarly, each (virtual) link 𝑙  of slice 𝑘  is associated with a resource 

demand 𝑑𝑘,𝑙(𝑡). Note that this load will be added to all physical links along the PN path 

between the execution nodes hosting the two VNFs connected by virtual link 𝑙. 

Remark: These demands are often unknown, stochastic, non-stationary (correlation between VNFs 

of the same slice is also common); the main reason why we require a learning-based optimization 

algorithm to tackle this problem.} 

The resource demands of all slices (VNFs and VLs) hosted by the network at time 𝑡 are organized in 

a vector denoted by 𝐷𝑡 . For example the demand vector in Figure 4-1 is: 

𝐷𝑡 = (𝑑1,1, 𝑑1,2, 𝑑1,(1,2), 𝑑2,1, 𝑑2,2, 𝑑2,3, 𝑑2,(1,2), 𝑑2,(1,3), 𝑑2,(3,1), 𝑑2,(3,2)) 

Notice that 𝐷𝑡  is combinatorial, so the number of possible values |𝐷𝑡|  it can take increases 

exponentially with the number of hosted slices.  

Service Level Agreements 𝑞𝑘 : Each slice 𝑘  comes with some slice-specific requirement 𝑞𝑘 , which 

defines a maximum (or minimum) value for an end-to-end KPI metric. For example, in Figure 4-1, the 

KPI metric is the end-to-end queuing delay.  

4.1.2 End-to-end KPI modelling 
In order to calculate the SLA violation cost we need to model different end-to-end KPI metrics that 

assess the performance of a slice 𝑘 as a function of the configuration and the demand. We give two 

examples of end-to-end KPIs: 

 Queuing delay: Assuming an M/G/1/Processor Sharing (PS) type of scheduler (an M/G/1/PS 

processor with classes has been shown to be a good approximation for many proportionally 

fair wireless schedulers [37]), we can calculate the mean delay experienced by a VNF/VL on 

the host node/link, using a standard closed form formula for M/G/1PS queues [38]. This is a 

function of the host’s capacity and the aggregate resource demands of the hosted VNFs/VLs. 

Then, in the case of a simple chain slice, the end-to-end queuing delay is the sum of the 

delays on the traversed nodes and links. As an example, in Figure 4-1, the delay experienced 

by Slice 1 is the sum of the delays in node 2, link (2,3), link (3,6), link (6,9), link (8,9), and node 

8. In the case of a more complex slice, a Jackson network type of analysis could be applied 

to calculate the delay [38]. Note that this modelling captures the resource allocator 

scheduler impact. 

 

 Underprovision: A penalty is paid when the aggregate demand of the VNFs/VLs embedded 

on a physical node/link exceeds its nominal capacity [12]. It can be used as a proxy for slice 

performance on a physical node/link when details about queuing delay are not available. 

Note that within the proposed framework any other end-to-end KPI can be incorporated (e.g. to 

model bandwidth). 
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4.1.3 Control decisions and associated cost 
Control decisions: 

The control we have over the system is the embedding of slices on top of the Physical Network 

(placement of VNFs to physical nodes and VLs to physical links). For the moment we assume that the 

routing path between any 2 servers of the network is given by a routing algorithm, so the direct 

control we have is only the placement of VNFs to servers (we call this the configuration of the 

system). However, we can indirectly control the routing and avoid link congestion by placing VNFs to 

suitable nodes. 

Configuration 𝑪𝒕 : The configuration of the system at time 𝑡  is a vector 𝐶𝑡  that represents the 

mapping of VNFs to nodes for all slices. Each element 𝒄𝒌,𝒗 ∈ 𝑪𝒕, indicates the host node of VNF v of 

slice k. As an example, in Figure 4-1, the first VNF of Slice1 is hosted by node 2, so 𝒄𝟏,𝟏 = 𝟐, while 

the configuration is 𝑪𝒕 = (𝒄𝟏,𝟏, 𝒄𝟏,𝟐, 𝒄𝟐,𝟏, 𝒄𝟐,𝟐, 𝒄𝟐,𝟑). 

Notice that, similarly to the demand vector, the configuration vector is also combinatorial. This is one 

of the major challenges in the slice embedding problem, leading to high optimization complexity for 

realistically sized scenarios.  

Operational Costs of Physical Network Infrastructure: 

Given the (usually unknown) demands 𝐷𝑡 and the configuration 𝐶𝑡 at time 𝑡, we assume that the 

system suffers an instantaneous cost related to both the network performance (i.e. direct cost to the 

operator) and the slice performance (e.g., indirect cost related to SLA violations). We choose to 

consider the following cost quantities in this work (other components can be straightforwardly 

added to the framework): 

 Type 1 cost: Node utilization (𝑔1). It is equal to the number of active servers (those that host at 

least one VNF) and accounts for energy consumption expenses. The idle servers can be set to sleep 

mode and save energy, while minimizing this cost also facilitates the admission of new slices by 

maximizing the free space of resources [39]. 

 Type 2 cost: SLA violation (𝑔2 ). When the maximum value 𝑞𝑘  defined by the SLA of a slice is 

exceeded, a penalty is paid to the slice tenant. This penalty may take any form that is appropriate 

to model the impact of violating the corresponding KPI (e.g., linear, quadratic, etc.). So, the SLA 

violation cost is equal to the sum of these penalties over all the hosted slices. 

  Type 3 cost: Reconfiguration (𝑔3). The cost for migrating VNFs from their host servers to other 

servers in the PN. It relates to the overhead generated for reassigning all VNFs and the delays 

incurred by this action, which may lead to penalties for SLA violations [11]. The simplest way to 

define it is to consider this cost equal to the number of migrating VNFs (all migrations have equal 

cost).  

The total cost 𝑔 of a control decision is simply the weighted sum of the three different types of costs 

described above: 

𝑔 =  𝑤1𝑔1 + 𝑤2𝑔2 + 𝑤3𝑔3 

, where the weights 𝑤1, 𝑤2, 𝑤3 are scalar values to be defined by the network operator. 
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4.2 Reinforcement Learning algorithms 

Our goal in the dynamic slice embedding problem is to decide the configuration 𝐶𝑡 at every time 𝑡, 

(i) towards optimizing the total system cost (consisting of the various cost components presented in 

the previous Section), while (ii) not knowing a priori how demands 𝐷𝑡 evolve over time. This is an  

 

online learning and control problem, for which Reinforcement Learning (RL) schemes are a natural 

candidate. Below, we first define the main components of any RL scheme, namely its state and action 

space, and the rewards (often referred to as “costs'” in minimization problems [35]). Then, after 

discussing why this problem is very difficult to solve, we present some of the RL algorithms that can 

be utilized to maximize these rewards (or minimize the costs) over a discounted infinite time horizon. 

4.2.1 RL problem formulation 
State (𝑺𝒕): 

The state of the system at any time-slot t consists of (i) the slices' configuration 𝑪𝒕 on top of the 

physical network, and (ii) the currently observed resource demand 𝐷𝑡. Consequently: 

𝑆𝒕 = (𝐶𝑡, 𝐷𝒕) 

RL agent action (𝑨𝒕): 

The action 𝐴𝒕 that our RL agent needs to take (the control decison) is a good (re-)configuration 𝐶𝒕+𝟏 

(without knowing the future demand 𝐷𝒕+𝟏. 

Reward (𝒓𝒕): 

Given some observed state 𝑆𝒕, an action 𝐴𝒕 taken by the RL agent, and the next state 𝑆𝒕+𝟏 revealed 

by the environment, the reward obtained at time 𝑡 + 1 is equal to the negative of the cost 𝑔 defined 

in the previous section: 

𝑟𝑡+1 = −(𝑤1 ∙ 𝑔1(𝐴𝑡) + 𝑤2 ∙ 𝑔2(𝑆𝑡+1) + 𝑤3 ∙ 𝑔3(𝑆𝑡, 𝐴𝑡,)) 

The minus sign is introduced because the RL agents typically try to maximize the expected 

accumulated rewards over a discounted infinite horizon. 

4.2.2 The curse of dimensionality in the slice embedding problem 
In the Section where we described the system model, we highlighted the combinatorial nature of 

the demand and configuration vectors. Consequently, the state and action spaces are also 

combinatorial and grow very fast with the size of the system. Even for relatively small scenarios the 

number of states and actions can be billions! 

Toy example: 

As an example, consider the (oversimplified) case of a single domain network, which hosts 10 slices, 

and each slice consists of only one VNF (assume no VLs); we also have 5 servers, while the resource 

demand of each VNF can take only one out of 2 distinct values (high or low level). Even in this toy 

scenario, the number of possible states is: 

|𝑆| = 510 ∙ 210 = 1010 

, where the first term is due to the 5 different servers where each of the 10 VNFs can be placed, 

and the second term is due to the 2 levels of resource demand that each of the 10 VNFs may impose 

on the host. Similarly, the number of possible actions is: 

|𝐴| = 510 
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It is obvious that the dynamic slice embedding problem suffers from the notorious curse of 

dimensionality, meaning that the state and action spaces grow very fast with the size of the system, 

making it very hard to solve for realistically sized scenarios. Consequently, we need an algorithm 

that can tackle the high dimensionality problem. We will start from one of the most standard RL 

algorithms (QL), highlight the implications due to the size of state and action spaces, and build on 

top of that to eventually come up with a proposed solution. 

 

4.2.3 Q-Learning (QL) 
The QL agent is equipped with a table containing the 𝑄 values of all possible state-action pairs. The 

𝑄(𝑆, 𝐴) value indicates how good it is to take an action 𝐴, while being in a state 𝑆. Consequently, a 

QL agent can behave optimally as soon as it knows all the correct 𝑄  values.  These values are 

randomly initialized and the agent converges to the correct ones by interacting with the system 

during the training phase, where it updates the value of the visited state-action pair at each time-

slot according to: 

(1 − 𝛼)𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 ∙ 𝑟𝑡+1 + 𝛾 ∙ max
𝐴∈𝒜

(𝑄(𝑆𝑡+1, ∶)) 

In Figure 4-2 there is a schematic representation of the interaction between the agent and the 

system.  

Such schemes provably converge to the global optimal solution of the problem, without any a priori 

knowledge of the resource demands 𝐷𝑡 [35]. The important downside of such “tabular” algorithms 

is that every possible state-action pair must be encountered on training enough times each, in order 

to ensure convergence to a good estimate of the respective 𝑄 value. Considering the exploding 

number of states and actions in our problem, this leads to a very slow convergence. For the same 

reason, the size of the 𝑄-table may lead to prohibitively large memory requirements. Finally, due 

to the exploding number of actions, the argmax operation over all actions calculated by the agent 

at each time-step is very expensive. Consequently, QL can be applied only in extremely small toy 

scenarios to give the optimal policy, but it is not a scalable algorithm that can be generally applied 

for dynamic slice embedding. 

 

Figure 4-2. Schematic representation of the interaction between the Q-learning agent and the system 
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4.2.4 Deep Q-Network (DQN) 
A first step towards tackling the scalability issues of QL is to approximate the Q function by replacing 

the Q-table with a parametrized function (like a Deep Neural Network (DNN)). A well- known and 

successful approach is the DQN introduced in [36]. DQN is also equipped with some additional 

components, like the target network and experience replay memory, which are very important for 

the algorithm’s stability during training and the sample efficiency (fewer samples are needed for 

training). As depicted in Figure 4-3, the DNN takes as an input the state of the system 𝑆𝑡, and outputs 

the 𝑄-values of all possible configurations. The benefit of using a DNN is that the agent needs to 

learn fewer parameters compared to the 𝑄-table (faster convergence, lower memory requirements), 

and that the update of the DNN parameters (with stochastic gradient descent) at each timeslot 

affects the 𝑄-values of multiple state-action pairs (faster convergence). The drawback is that the 

DNN has as many output neurons as the number of possible actions/configurations (combinatorial). 

Consequently, the number of parameters will still eventually explode, and the argmax operation at 

each timestep is still very expensive. However, with DQN we have managed to tackle the problem of 

the large state space, and now only the action space size limits the scalability of the algorithm 

 

Figure 4-3. Schematic representation of the interaction between the DQN agent and the system model 

 

4.2.5 Multi-agent DQN 
A natural approach for problems where the action space can be decomposed, is a multi-agent RL 

scheme. In our case, 𝐴 naturally decomposes into action subspaces per VNF (or it could be also per 

slice). We therefore consider that there is one independent DQN agent per VNF, equipped with its 

own DNN, experience replay memory, and target network, that decides only for the placement of 

the specific VNF. As depicted in Figure 4-4, all agents observe the global state 𝑆𝑡 and each agent 

decides for the server where the associated VNF must migrate next. After each agent has taken an 

action; the global action 𝐴𝑡 is formed, a reward and a new state are observed. These are broadcast 

to all agents’ buffers, and then each agent makes a gradient update of its own DNN parameters. The 

number of output neurons for each agent’s DNN is now equal to the number of possible host servers 

where the associated VNF can be placed (which is not combinatorial, it increases linearly with the 

number of servers). Consequently, each agent has fewer parameters to learn (faster convergence, 

lower memory requirements), and we have bypassed the computationally heavy argmax operation 

over combinatorial actions. Also, note that since all the agents view the same global state, they can 

operate in parallel at each time-step. So, this multi-agent scheme with independent DQN agents is a 

scalable solution, suitable for dynamic slice embedding (reconfiguration). 
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Figure 4-4. Schematic representation of the interaction between the multiple DQN agents and the system model 

 

4.3 Preliminary results 

Here we provide some preliminary results indicating the potential of the DQN based approaches. We 

consider a very small toy scenario in order to be able to apply the tabular Q-learning algorithm, which 

gives the optimal policy, and use it as a benchmark to assess the quality of policies given by IDQN 

and DQN. Consequently, the setup is a single domain network, with 2 servers and 4 slices, where 

each slice consists of a single VNF with a 2-level high-low resource demand. Moreover, the demands 

are Markovian.  

The simulation results can be summarized by Figure 4-5. The plot depicts the average cost as a 

function of the time-slot, where the cost is averaged over 10 different runs with different 

initializations of the random seeds (but in the same dataset). Also, high frequency components have 

been filtered out. All algorithms start with randomly initialized parameters (of the Q-table or the 

DNN), so in the beginning they demonstrate a higher cost. As the training progresses, the algorithms 

start learning the system’s dynamics and optimizing their policies, so the cost decreases. Towards 

the end of the training (right side of the plot) all algorithms end-up to policies with similar costs 

(similar quality). However, QL needs around 70000 timeslots to converge while DQN and IDQN have 

converged from the first few thousand timeslots. Consequently, from this toy scenario the takeaway 

is that DQN based algorithms can find good quality solutions and much faster than tabular QL. 

However, the scenario’s action space is still very small to observe any difference between IDQN and 

DQN.   
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Figure 4-5. Convergence plot 

 

4.4 Conclusion and future work 

In this chapter we proposed a flexible model for the dynamic slice embedding problem, suitable for 

multi-domain setups and diverse end-to-end SLAs. The proposed framework is generic and could 

possibly accommodate different KPIs, as well as concepts like Functional Split and Integrated Access 

and Backhaul in the RAN domain. Within this framework we examined the application of 

Reinforcement Learning algorithms to solve the problem at hand, highlighted the challenges 

encountered by vanilla tabular RL algorithms, and proposed a multi-agent DQN scheme which 

provides a more scalable solution.    

Future work includes the introduction of a theoretically grounded framework for (multi-agent_ DRL 

algorithms in the context of network virtualization, and evaluation of performance mainly through 

simulations with existing real traffic datasets. Part of the evaluation might also take place on real 

platforms.  
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5 DRL based slice resource allocation and management for 

beyond 5G and 6G 

5.1 State of the Art 

5.1.1 Network slicing 
Authors in [40] overview on Machine Learning (ML) and AI based slicing approaches including deep 

Q learning for a Mixed Integer Linear Programming (MILP) problem for baseband unit (BBU) capacity 

allocation and Physical Resource Block (PRB) management. The research work discussed, aims to 

minimize the waste of resources as well as guarantee the service requested by user. It indicates 

interesting approach for rapid parameterization of slice, its management to filter and analyses the 

traffic parameters. It compares the results with static slicing baseline model. The work provides 

intelligent resource management that reduces the ability to reuse a network service for different 

tenants. Migration of Network Functions (NFs) between access network (AN) and core network (CN) 

for service support to provide low latency and reduction of congestion between them. The proposed 

method has been tested on fronthaul simulation based on Open Air Interface (OAI) and FlexRAN 

Controller which uses USRP B210 boards as radio units and Huawei E3372 as UEs. The algorithms 

have been tested for 10 MHz FDD uplink and downlink transmission of 500–1200 bytes packet size 

between 2 user equipment for UDP and ICMP protocol. Some of the main takeaways show that 

dynamic slicing can provide better resource management optimization, enhance the Quality of 

Service (QoS) and improve stable core network for 5G.  Slice isolation, diversification, deployment 

and, advance management can lead to exploit slice properties and better virtualized network 

implementation to achieve the required key performance indicators (KPIs). Whereas, real time 

dynamic slicing approaches enhance user equipment (UE) acquisition, slice configurations and 

system runtime optimization, though the intelligent management lack to ensure the multilevel 

control loop at different time scale that could have been explored and utilized towards further 

improvements which will be discussed in proposed work.  

Network function virtualization (NFV) and software defined network (SDN) based network 

architecture to support centralized and distributed control for user and control planes has been 

studied in [41], [42] and [43]. It distinguishes between three distinctive and interworking RAN slicing 

options suitable for various deployment scenarios. The architecture discussed supports centralized 

coordination within one or multiple slices. The research is mostly focused on virtualization of 

network functions as well as definition of RAN slices for 5G networks under RAN sharing and software 

defined RAN which can be interoperated to understand its working for O-RAN networks. It helps to 

understand mobile virtual network operator infrastructure which shares virtual network functions 

(VNFs) between different mobile network operators (MNOs) and infrastructure providers. For the 

design of RAN Intelligence Controller (RIC) architecture in case of centralized and virtualized resource 

management, the perspective of slicing functional blocks and its interfaces plays a vital role [44]. The 

research work in [44] also provides insights about cloud and radio monitoring architecture as well as 

its approaches. This two-tier architecture with small cells utilizes edge/cloud computing for 

offloading of several latency-oriented tasks. It also defined main data center at the core part of 

network for management and orchestration of mobile radio signalling. Advanced approaches with 

better slice management, orchestration and resource handling can be achieved specifically with the 

help of AI based techniques implemented as a part of O-RAN modules or a 3rd part application. It is 

in reference to discussed work as indicated in our proposed system model and problem formulation. 
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5.1.2 AI/ML for wireless communication  
AI based slice management framework for supervised solutions can be achieved by data training. It 

works well with reinforcement learning (RL) approaches where different forms of interaction with 

the system that has to be controlled are possible [45]. AI for admission control of slices has trade-off 

between resource sharing and key performance indicator (KPI) fulfilment needs to be tackled by the 

use of feed forward neural network. It can also be exploited in a way to allocate and change the 

allocation for intra as well as inter slice radio resources by keeping in check with KPIs as we proceed 

in our proposed solution. Upon arrival of a new slice request, the system takes the action (i.e., 

accepting or rejecting the request) that maximizes long-term revenue; each neural network (NN) is 

in charge of forecasting the revenue associated with one action. AI for resource orchestration may 

come across the tradeoff between under provisioning and over dimensioning which can be tackled 

by convolutional NN (CNN) architecture for time series prediction with a dedicated loss function as 

it allows exploiting inherent spatial correlations in the traffic generated at different geographical 

locations. The trade off and its effect can be then utilized as one of the decision-making factors 

towards long term solution. AI for Slice Scheduling at Radio Access suffers through a key challenge 

of network slice design of a radio access network (RAN) virtualization mechanism that jointly 

provides isolation between network slices and adapts the allocation of pooled physical resources to 

the needs of each virtual RAN. A combination of unsupervised learning (deep auto-encoder) and 

deep reinforcement learning is a promising solution. Deep deterministic policy gradient (DDPG) 

algorithm, implemented by actor-critic NN structures, can deal with large and/or continuous action 

spaces, which are common in resource control problems [46]. The data driven framework can be 

effectively designed to allocate capacity to individual slices by adopting an original multi timescale 

forecasting model [11], 

 It uses deep Learning architectures and a traditional optimization algorithm 

 It anticipates resource assignments that minimize the comprehensive management costs 

induced by resource overprovisioning, instantiation and reconfiguration, as well as by 

denied traffic demands 

 Isolation of resources across slices inherently increases network capacity requirements, 

and a dynamic, preemptive and efficient allocation of resources to slices 

It can further be improved with adaptation of RL techniques to learn the environment and intelligent 

agent better in terms of resource utilization, traffic smoothening and load balancing. These 

approaches are exploited and considered as main basis for our system model. The use of AI can 

enable zero-touch networks, i.e., fully self-operating communication infrastructures where 

forecasting holds a fundamental role. To resolve issues such as, 

i. unnecessary resource overprovisioning, 

ii. non-serviced demands 

iii. resource instantiation 

iv. resource reconfiguration 

 

Capacity forecasting tries to accommodate the demand and to limit overprovisioning, by 

reconfiguring resources at every re-orchestration opportunity and it minimizes costs (i) and (ii). 

Whereas, a long-timescale orchestrator operates over extended intervals that span multiple re-

orchestration opportunities. It allocates a dedicated capacity to each slice and also reserves an 

additional shared capacity accessible by any slice. Each capacity remains constant across the interval 

reducing (iii). Only the shared capacity is then reallocated at every re-orchestration opportunity by a  
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short-timescale orchestrator, while the configuration of the dedicated capacity is preserved 

throughout the extended interval, thus reducing cost (iv). Both long- and short- timescale 

orchestrators help build better distribution of resource among the slice resources and is inspirational 

to go with multi timescale approach for resource handling [11].  

Deep learning models trained offline can be defined to perform end to end dynamic and reliable 

resource slicing under dataset dependent generalized non-convex service level agreement (SLA) 

constraints [43]. Authors in [43] discuss DNNs to model and estimate the required resources at each 

virtual network function (VNF) such as physical resource blocks at a transmission/reception point 

(TRP), radio resource connected (RRC) user’s licenses at a virtual baseband processing unit (vBBU), 

enhanced radio access bearers (ERAB) and signalling connections at a virtual digital front end (vDFE) 

and virtual SDN controller (vSDNC). The DNN model shows two SLA based approaches, violation-

based SLA and resource bound based SLA. The contribution includes slice scheduler that allows 

existence of slice with bandwidth based and resource-based reservation simultaneously. [1] 

discusses a deep neural network architecture, which is trained via a dedicated loss function and 

returns a cost-aware capacity forecast. This forecast can be directly used by operators to take short- 

and long-term reallocation decisions. A deep learning architecture is utilized by authors in [45], which 

exploits space- and time-independent correlations typical of mobile traffic, and computes outputs at 

a data-center level to jointly solve the problem of capacity in network slicing. It leverages a 

customized loss function that targets capacity forecast letting the operator tune the balance 

between over-provisioning and demand violations. Furthermore, [47] provides long-term forecasts 

over configurable prediction horizons, operating on a per-service basis in accordance with network 

slicing requirements. DeepCog aims at forecasting the (constant) capacity that should be allocated 

over a long-term horizon, so as to minimize the monetary cost incurred by the operator.  

The overall studied literature shows the gap in exploiting the multi time scale approach towards 

resource configuration for inter and intra slice management. It can further be explored using DRL 

methods and managing trade-offs to smooth out the underlying traffic for each slice in aim to 

increase the slice performance while keeping in check with quality of service. This specific gap is 

tackled in the system model and research work and we explore different aspects of real and non-

real time scales for radio resource allocation. In addition to this the usual problem faced in DRL for 

constructing limited number of state and action space in terms to get reward can be tackled using 

various additional architectures or by defining constraints on action space based on use case and 

vertical applications. 

 

5.2 DRL based slice resource allocation and management 

The main objective is to develop a robust framework for RAN slicing resource allocation as well as 

management for enhanced mobile broadband and ultra-low latency services at the edge of the 

network, using cutting-edge technologies, such as distributed RL and federated learning (FL). The 

proposed framework will be autonomous and able to dynamically group the VNFs to form an end-

to-end slice specific to end user request and achieve defined QoS. The slicing will be focused on 

reducing service latency and increase the quality of service while ensuring optimal resource 

allocation by the use of intelligent agent placement at the edge of the network. The solution will 

follow the guidelines of the standardization, such as the 3rd Generation Partnership Project (3GPP), 

Open radio access network forum (O-RAN) and ETSI, as they are working towards defining a unified 

5G architecture for network operators to implement as 5G and beyond networks. Specific 

contribution includes robust modelling and optimization framework for dynamic RAN slicing in 5G  
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and beyond networks for diverse vertical application using reinforcement and deep learning 

techniques with multiple intelligent agents for each slice. 

5.2.1 System model  
The architecture in Figure 5-1 shows the O-RAN and 5G based network to serve the users requesting 

variety of vertical applications. It has four main blocks as, local edge, remote edge, orchestrator and 

core cloud. The local edge includes O-RU (O-RAN radio units), which are access points or front-end 

transceivers located at specified distance as per indoor or outdoor scenario with size of a WIFI router. 

This includes part of L1 as per 3GPP based split options. For the architecture we consider split 7.2 

which indicates O-RU with low PHY. Whereas, O-DU has High PHY, L2 and other higher layers along 

with near real time RAN intelligence controller (near RT RIC) seating at this edge referred as remote 

edge in the system model. The O-DU is connected with O-RU using open fronthaul interface such as 

CPRI, eCPRI or other type of operator defined interface (OFI). O-RU will be assigned with specified 

bandwidth, power and association decision provided by algorithm and it will be serving underlying 

end users. The radio link established between O-RU and end users requires robust radio resource 

allocation and management to ensure the defined quality of service. The DRL based algorithm will 

be seating at the remote edge to distribute intra-slice resources in most efficient and intelligent 

ways. The orchestrator also seating at the edge will have higher layers and functionalities of slice 

management modules proposed by 3GPP. It includes network slice management functions, network 

slice subnet management functions, network slice selection function, non-real time part of RIC, other 

subnet controllers and slice managers. Slice orchestrator will also be connected to virtual 

infrastructure management entities and core cloud respectively to provide end to end connection 

and internet services.  

 

Figure 5-1: 5G Architecture based on ORAN and 3GPP for proposed system model 

The network is multi-service, multi-tenant and multi-vendor and adapts intelligent network 

approaches to utilize the available resources in most optimal way. Few of the important aspects 

about such intra and inter slice radio resource as well as other subnet resource allocations are 

dynamic resource handling, isolation and keeping service level agreements in check which include 

maintaining quality of service. The different vertical applications can be categorized into 5G use  
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cases. Each of these use case corresponds to specific set of data rate, delay, and other QoS 

requirements. Hence each of such use case will be categorized or fulfilled by different network slices.  

The proposed system model is shown in Figure 5-2. The DRL algorithm will be sitting at the remote 

edge. This edge has O-DU, near RT RIC, databases/storage and intelligent agent for each slice. In this 

specific proposal, we consider intelligent agents for enhanced mobile broadband (eMBB) and ultra-

low reliable latency (URLLC) slice respectively appearing as separate xAPPS at near RT RIC. The 

modules and architecture are supported and enabled by O-RAN and MEC capabilities. The high-level 

slicing is executed by orchestrator part and reported to remote edge whereas, the PRB allocation 

within resource block group distribution is executed at the remote edge. So, each slice has available 

resource block groups (RBGs) assigned to them to serve underlying nodes. The resource allocation 

will be done based on state and action to achieve maximum reward and value. The algorithm uses 

value-based approach for Markov’s decision process. The aim here is to achieve maximum quality of 

service within optimal distribution of resources within each of the slice. Further in this proposal, we 

will consider exchange of information between these intelligent agents to priorities allocation of 

RBGs at first place which involve reporting to non-RT RIC and use DRL to execute interslice resource 

allocation.  

 

Figure 5-2: Proposed system model 

5.2.2 Problem formulation 

The RAN network subnet slice instance (NSSI) slice resource management is executed at two 

different control loop levels, real time and near real time as defined by O-RAN specifications. For 

initial real time dynamic resource management and allocation, the default RAN RRM configuration 

is given by service management and orchestration (SMO) via O1. Hence each RAN NSSI has pre-

allocated part of bandwidth to serve the associated users. Here the performance of slice is optimized 

based on requested QoS configurations to achieve service level simulator (SLS). A time frame consists 

of a number of subframes. The total frame duration is divided into a set of time slots 𝜏 =

{1,2,3, . . . , 𝑇} each with 1 ms and consisting of one physical resource block of 180 kHz. The entire 

system model comprises of 𝑈𝐸 = {1,2,3, … , 𝐾} set of users k∈ {𝐾𝑢𝑙 , 𝐾𝑑𝑙},𝑂 − 𝑅𝑈𝑠 = {1,2,3, … , 𝑀}  
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set of O-RUs, and the spectrum which can be shared among all users in UL and DL and it is divided in 

𝑃𝑅𝐵 = {1,2,3, … , 𝑃𝑅𝐵}  sub-bands or sub-channels. We assume that AWGN at all users are 

independent circular symmetric complex random variance with zero mean and variance of 𝜎2. The 

channel model is considered as a frequency selective flat fading with the pedestrian mobility of the 

users in the system model.  The CSI can be extracted from the database of the near RT RIC as reported 

by E2 node that lies at the edge server.  Therefore, we assume that perfect CSI is available for the 

resource allocation and management at the edge server. Each user is associated with O-RUs on either 

UL or DL. The data rate of DL can be expressed as, 

𝑅𝑘
𝐷 = 𝐵𝑊𝑘 𝑙𝑜𝑔2 (1 +

𝑏𝑘,𝑚𝑃𝑚
𝐷|ℎ𝑘,𝑚

𝐷 |
2

𝐼𝑘,𝑚
𝐷 + 𝜎2

) (1) 

For eMBB intelligent agent, the objective is to maximize the system throughput by jointly optimizing 

the uplink and downlink (UL and DL) scheduling, PRB allocation and O-RU selection for eMBB RAN 

NSSI while checking whether each user is achieving the minimum QoS requirements while not 

exceeding the assigned BW for respective RAN NSSI. It also checks the fronthaul capacity constraints 

Therefore, our problem can be mathematically formulated as, 

  

𝑚𝑎𝑥 ∑ ∑ [𝑎𝑘,𝑚,𝑅𝑘
𝑈 + 𝑏𝑘,𝑚𝑅𝑘

𝐷]

𝑚∈𝑀𝑘∈𝐾

 
(2) 

 

Here, the fronthaul capacity 𝑁𝑓𝑟𝑜𝑛𝑡ℎ𝑎𝑢𝑙 is defined as the maximum number bits transmitted over 

fronthaul link. 

KPI Threshold value 

DL datarate,  𝑅𝐷𝑚𝑖𝑛 

UL datarate, 𝑅𝑈𝑚𝑖𝑛 

20Gbps 

10Gbps 

DL datarate per user, 𝑅𝑘
𝐷𝑚𝑖𝑛 

UL datarate per user, 𝑅𝑘
𝑈𝑚𝑖𝑛 

100Mbps 

50Mbps 

Latency,  𝑑𝑘
𝑚𝑎𝑥 20ms 

Table 4.1: KPIs and its vales 

The delay in the system model, both for uplink and downlink transmission, is calculated based on the 

transmission time delay 𝑑𝑡𝑥, queuing delay 𝑑𝑞𝑢𝑒, and retransmission delay 𝑑𝑟𝑡𝑥, by simply taking 

the sum of all three parameters. The queuing delay and HARQ retransmission delay is assumed a 

constant value available at near RT RIC reported by E2 nodes form RRC protocol. Whereas, 

transmission delay is calculated based on packet size for respective user 𝐿𝑘 and link capacity 𝐶𝑚,𝑘 

between associated O-RU and user. For URLLC intelligent agent, the objective is to maximize the data 

rate of serving users by jointly taking optimal decision for association and required number of PRBs 

to serve requested URLLC users within maximum delay budget and hence can also be indicated by 

equation (2). 

Whereas, for Non-RT RIC intelligent agent, the objective is to maximize the probability of QoS 

achievement, 𝑃𝑠𝑙𝑖𝑐𝑒 and utilization, 𝑈𝑠𝑙𝑖𝑐𝑒 for a given traffic load by using weighted combination of 

𝜌 and β respectively based on the information provided by NSSI intelligent agents and hence can be 

represented as, 
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     max
Ω𝑠𝑙𝑖𝑐𝑒

F( 𝑃𝑠𝑙𝑖𝑐𝑒 , 𝑈𝑠𝑙𝑖𝑐𝑒)     (3) 

Subjected to, 

𝑁𝑡
𝑒 + 𝑁𝑡

𝑢 ≤ 𝑁𝑡𝑜𝑡𝑎𝑙,𝑡         𝑡∀𝑇𝑇𝐼 

𝑤ℎ𝑒𝑟𝑒, 𝑁𝑡𝑜𝑡𝑎𝑙,𝑡 = (𝐵𝑊𝑡𝑜𝑡𝑎𝑙 − 2𝐵𝑊𝑔𝑢𝑎𝑟𝑑)/𝐵𝑊𝑃𝑅𝐵 

Here, 𝑁𝑡
𝑒 , 𝑁𝑡

𝑢, 𝑁𝑡𝑜𝑡𝑎𝑙,𝑡 are number of PRBs available at eMBB, URLLC slice and total number of PRBs 

available respectively. Total number of PRBs available are calculated based on total bandwidth, 

𝐵𝑊𝑡𝑜𝑡𝑎𝑙, guard band 𝐵𝑊𝑔𝑢𝑎𝑟𝑑  and bandwidth for a single PRB, 𝐵𝑊𝑃𝑅𝐵.  

 

Figure 5-3: Deep Q learning framework 

The Markov’s decision process (MDP) is defined with tuple of {𝑆𝑒 , 𝐴𝑒 , 𝑅𝑒 , 𝛾𝑒} corresponding to state, 

action, reward and discount factor of NSSI intelligent agent and the Q value, target Q value and loss 

function is calculated as, 

𝑇𝐷𝑠 = 𝑟𝑒
𝑖+1 + 𝛾 max

𝑎𝑒𝜖𝐴𝑒

𝑄𝑖+1(𝑠𝑒 , 𝑎𝑒)              (4) 

We try to minimize the loss function based on TD error at each s steps, 

  𝐿𝑠 = [𝑇𝐷𝑠 − (𝑄𝑖(𝑠𝑒 , 𝑎𝑒))
2

]               (5) 

𝑄𝑖(𝑠𝑒 , 𝑎𝑒) =  𝑄𝑖(𝑠𝑒 , 𝑎𝑒) + 𝛼 × 𝐿𝑠 

 

i.e.,       𝑄𝑖(𝑠𝑒 , 𝑎𝑒) =  𝑄𝑖(𝑠𝑒 , 𝑎𝑒) + 𝛼 [𝑟𝑒
𝑖+1 + 𝛾 max

𝑎𝑒𝜖𝐴𝑒

𝑄𝑖+1(𝑠𝑒 , 𝑎𝑒) − (𝑄𝑖(𝑠𝑒 , 𝑎𝑒))
2

]            (6) 

              Target Q              predicted Q 
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5.3 Conclusion 

This chapter discuss RAN edge domain slice resource allocation and management problem and 

proposes a solution using deep RL technique for different slices at different timescale to smooth out 

the utilization of slice resources based on the service demands. The future immediate research plan 

includes executing the local simulator set up for the proposed system model and problem 

formulation, to obtain the convergence and achievable matrices as per abovementioned objectives. 

Further extend the proposed system model and framework to tackle delay latencies up to 5ms in 

multi-user multi-service multi-tenant scenario as well as improve network reliability up to 99.99% 

within delay budgets by introducing novel traffic steering techniques. 
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6 Conclusions and Future Work 

This deliverable provided the main frameworks that will be utilized in WP3 towards optimizing end-

to-end slicing in beyond 5G and 6G mobile networks. The system models proposed in Chapters 3, 4, 

and 5, can support functional split at the RAN domain and thus can accommodate the IAB concept. 

Moreover, traffic steering can be indirectly enforced by suitable VNF placement, according to the 

generic framework introduced in Section 4.1, and alleviate from link congestion. The proposed 

algorithms include mainly XAI based Federated Learning, Distributed RL, and multi-agent Deep RL 

schemes, which can provide scalable solutions and tackle the difficulties introduced by the 

combinatorial nature of the slicing problems. Some of the proposed models and solutions are not 

finalized yet, so they will be more clearly defined in the next deliverable, which will also include the 

corresponding validation results. Hence, future work includes the further refinement of the 

proposed solutions and their validation either through simulations or by applying them to a real 

platform.    
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