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Executive summary 

This report includes the SEMANTIC ESR contributions towards the 

objectives of WP1 (Spectrum and Forward-Compatibility Aspects for multi-GHz 

NR operation).  

More specifically, it summarizes the key findings and performance 

evaluation results of the ESRs in Task 1.3 Performance Evaluation and 

Experimentation. This task has been led by NI and contributing partners are CLM 

and UOA. ESRs contributing to this deliverable are CLM-1, CLM-2, NI-1, and 

UOA-1. This deliverable focuses on beam-based transmissions in multi-GHz 

bands; low-complexity techniques for channel estimation in massive MIMO in the 

millimeter-wave (mmWave) band; distributed MIMO with focus on Integrated 

access and backhaul (IAB); and non-orthogonal multiple access (NOMA) for 

enhancing user experience in beyond 5G systems. 

The outcomes of this deliverable will be circulated to WP4 to convey to the 

respective ESRs a list of PHY components, resources and techniques towards 

the automated control and parameterization of the 3GPP 5G and Beyond (6G) 

NR evolution. 
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1 Introduction 

In the quest to provide higher throughputs and to accommodate large 

number of mobile devices, 5G cellular communication technology has moved 

towards millimeter-wave (mmWave) bands with large bandwidths [RAP+13], 

[RRE14]. However, communication in these bands is subject to severe 

propagation loss, attenuation from atmospheric gases and precipitation, line-of-

sight (LoS) blockage and scattering, and diffraction [MP05]. Beamforming with 

antenna arrays helps address these challenges [ROH14]. The small wavelength 

facilitates antenna arrays with large number of antennas at both base station (BS) 

and user equipment (UE). Large antenna arrays result in narrow beams with large 

array gains, which compensate for the severe propagation loss. However, narrow 

beams require accurate beam alignment [GPR+19]. To establish high directional 

links between BS and UE, 5G relies on a set of procedures known as beam 

management (BM). For initial access during BM, both BS and UE perform an 

exhaustive beam scan. However, large size codebooks at higher frequencies 

complicate the exhaustive beam scan-based BM resulting in large beam 

measurement overhead and consequently reduced spectral efficiency. Machine 

learning (ML) is very well known to deal with complex problems in computer vision 

and more recently in wireless communications. Consequently, several studies 

propose the use of ML for mmWave BM [KGP+23]. Thus, in the following 

chapters, we propose our solution for the ML-based mmWave BM and compare 

it with the state of the art. 

mmWave MIMO is now a reality with great potential for further improvement.  

We study full-duplex transmissions as an effective way to improve mmWave 

MIMO systems. Compared to half-duplex systems, full-duplex transmissions may 

offer significantly higher data rates and lower latency. However, full-duplex 

transmission is hindered by self-interference (SI) at the receive antennas and SI 

channel estimation becomes a crucial step to make full-duplex systems feasible. 

Already, there are several challenges in channel estimation of mmWave MIMO 

systems, such as high pilot overhead, pilot contamination, etc. With the additional 

need for SI channel estimation, utilizing full-duplex transmissions will further 

complicate the channel estimation bottleneck in full-duplex mmWave MIMO 

systems. In this work, we address the problem of channel estimation in full-duplex 

mmWave MIMO systems using neural networks (NNs). Our approach involves 

sharing pilot resources between users and transmit antennas at the BS, aiming 

to reduce the pilot overhead in full-duplex systems and achieve a comparable 

overhead to that of a half-duplex system. Simulation results demonstrate the 

superiority of the NN-based approach over the conventional minimum mean 

squared error (MMSE) channel estimator. We conduct various experiments to 

understand how NNs perform the estimation with different architectures, (e.g., 
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different numbers of hidden layers), the introduction of non-linear distortion (e.g., 

with 1-bit ADCs), and different channel conditions (e.g., low-correlated and high-

correlated channels). Our simulations provide novel insights into NN-based 

channel estimators. Additionally, in the case of separate antenna configurations 

in full-duplex systems, obtaining channel estimates of transmit antenna arrays to 

the downlink UEs poses another challenge. To address this, we propose 

estimating both uplink and downlink UEs at the receive chain and then employing 

a NN to map the channel from receive antenna arrays to downlink UEs and 

transmit antenna arrays. 

Non-orthogonal multiple access (NOMA) has become a promising 

technology for next-generation wireless communications systems due to its 

capability to provide access for multiple users on the same resource. In this work, 

we consider an uplink power-domain NOMA system aided by a reconfigurable 

intelligent surface (RIS) in the presence of a jammer that aims to maximize its 

interference on the BS uplink receiver. We consider two kinds of RISs, a regular 

RIS whose elements can only change the phase of the incoming wave, and an 

RIS whose elements can also attenuate the incoming wave. Our aim is to 

minimize the total power transmitted by the user terminals under quality-of-

service constraints by controlling both the propagation from the users and the 

jammer to the BS with the help of the RIS. The resulting objective function and 

constraints are both non-linear and non-convex, so we address this problem 

using numerical optimization. Our numerical results show that the RIS can help 

to dramatically reduce the per-user required transmit power in an interference-

limited scenario. 

Integrated Access and Backhaul (IAB) is an emerging technology that has 

gained significant attention from both industry and academia in recent years. As 

wireless networks evolve towards 5G and beyond, providing reliable backhaul 

connections to base stations is becoming increasingly challenging due to high 

costs and limitations of wired fiber deployment [MMF+20]. The 3rd Generation 

Partnership Project (3GPP) identified IAB as a promising solution that can enable 

flexible deployment of wireless backhaul using existing radio resources 

[3GP+20]. In the IAB architecture specified by 3GPP, certain base stations called 

IAB-nodes establish wireless backhaul links to relay traffic between user 

equipment and the core network via parent nodes [3GP+20]. This creates a multi-

hop wireless backhaul or fronthaul mesh that eliminates the need for dedicated 

wired infrastructure between every base station [SAD18]. 3GPP introduced 

integrated access and backhaul where the same spectrum is reused for access 

and backhaul transmissions [SD19]. Several field trials have demonstrated the 

technical feasibility of IAB networks. However, key challenges remain around 

interference management, mobility support, integration with existing systems and 

development of efficient IAB-specific protocols [SD19], [LWS20]. Resource 
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allocation in IAB networks poses unique challenges compared to traditional 

cellular deployments due to the tight integration of access and backhaul. 3GPP 

has specified that radio resources in IAB need to be dynamically shared between 

access and backhaul transmissions [3GP+20]. As IAB deployments become 

more complex with increasing backhaul hops, efficient distributed resource 

management strategies that can scale are crucial to unlock the full potential of 

shared access-backhaul networks. 
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2 Background on Relevant Technologies 

2.1 Machine Learning-based mmWave Beam Management 

The wireless communication at higher frequency bands (mmWave and 

THz bands) suffers from higher propagation loss and severe channel 

intermittency. To compensate these impairments, beamforming with highly 

directional transmission links achieved via high dimensional phased antenna 

arrays is used at the BS and the UE [RPM+21]. Consequently, a precise 

alignment of beams is required for link establishment. Beam alignment in 5G is 

achieved through a set of operations known as BM [GPR+19]. The BM procedure 

specified by 3GPP for 5G NR includes initial beam establishment, beam 

refinement and tracking, and beam failure detection and recovery [GPR+19]. 

However, the BM procedure specified by 3GPP suffers from higher beam 

measurement overhead, increased latency, and higher power consumption. In 

deliverable 1.2, we have provided a detailed overview of BM procedure along 

with its limitations. 

Inspired by the successful application of ML in natural language 

processing and computer vision, ML has also been harnessed in wireless 

communications [HCN+21, KKI+21]. Compared to traditional mathematical 

modeling-based methods, ML based models have several key advantages. 

Firstly, traditional mathematical models usually rely on idealized assumptions and 

may not represent the system accurately. ML models, on the other hand, can 

model the system's non-linearity and thus can represent it perfectly. Secondly, 

ML models are highly capable of capturing the high-dimensional features of the 

propagation environment, such as mobility patterns and blockage locations. 

Based on these motivations, ML has widely been researched for several aspects 

of wireless communications including beam management [AHS+22, DA22]. In 

deliverable 1.2, we have provided a comprehensive overview of ML-based BM 

approaches. The outcome of our literature review has been published in 

[KGP+23]. The survey paper classifies the existing ML-based BM approaches in 

supervised, reinforced, and federated learning and sub-divides these approaches 

based on the architecture of the neural network. Figure 1, taken from our 

publication, presents a summary of discussed ML-based BM approaches 

[KGP+23]. 
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Figure 1: Classification of ML-based beam management solutions for mmWave and terahertz 

bands presented in [KGP+23]. 

2.2 Full-duplex mmWave Massive MIMO Channel Estimation 

Current key enabling wireless technologies, such as massive multiple-

input-multi-output (MIMO), mmWave communication, ultra-dense networks, etc., 

have significantly improved the throughput of wireless communication [BH+14]. 

mmWave communication can meet high data rate demands thanks to the huge 

bandwidth available in this band, and the high path loss in these frequencies can 

be compensated by utilizing the beamforming gain of massive MIMO antennas. 

     Nonetheless, these technologies have mainly been studied for half-duplex 

communication, and the potential of utilizing full-duplex communication has been 

overlooked. In full-duplex transmission, a transceiver can simultaneously transmit 

and receive over the same frequency carrier, thus possibly doubling the spectral 

efficiency compared to half-duplex systems. Besides, the delay associated with 

half-duplex transmission would be alleviated in full-duplex systems, facilitating 

meeting low latency requirements for 5G and beyond [SS+14], [RA+21]. 

     To realize the full-duplex transmission, the self-interference (SI), which is 

caused by each transmit element onto the entire receive array, has to be 

canceled out. Three steps are usually considered for mitigating the SI channel 

effect at the receive antenna arrays: propagation, analog, and digital domain 

cancellations. In the propagation domain cancellation, SI power is suppressed 

before reaching the receive chain circuits, while analog domain cancellation is 

performed before the analog-to-digital converter (ADC) in the receive analog 

chain. Finally, digital domain cancellation suppresses residual SI power 

remaining from the propagation and analog domains. 
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There are two main antenna configurations used for full-duplex systems: 

separate antenna full-duplex and shared antenna full-duplex. Separate antenna 

full-duplex systems use separate antennas for transmission and reception, 

providing high isolation and low interference. On the other hand, shared antenna 

full-duplex systems use a single antenna for both functions, offering a simpler 

design and lower hardware costs [SS+14], [ES+14].  

2.3 Non-orthogonal Multiple Access  

2.3.1 Literature on Non-orthogonal Multiple Access (NOMA) 

NOMA is an interesting technique since it enables multiple access of many 

users in the same resource and is generally divided into two main classes: power-

domain and code-domain [SZS+18]. Power-domain NOMA (PD-NOMA) exploits 

situations where the users have different power levels. As Figure 2 illustrates, in 

the downlink of power-domain NOMA, the users nearer to the BS have better 

channel conditions compared to distant users who require higher transmission 

power to mitigate the higher path loss. The idea behind power-domain NOMA is 

that the users nearer the BS can employ successive interference cancelation 

(SIC) to remove the strong signal destined to the remote users before decoding 

their own signal [TJ91]. 

 

Figure 2: Illustration of Downlink of Power-domain NOMA. 

In the uplink power-domain NOMA, as Figure 3 illustrates, the SIC is implemented 

at the receiver of the BS. In the first step, the receiver decodes the signal of the 

near user that has a better channel condition, it subtracts it from the received 

signal to decode the signal of the far user [YYA+13].  
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Figure 3: Illustration of Uplink of Power-domain NOMA. 

The superiority of NOMA over conventional orthogonal multiple access 

(OMA) techniques is derived from the improved spectral efficiency due to the 

sharing of time/frequency/space/code resources, its allocation of different Quality 

of Service (QoS) levels to users based on power level allocation, and the fact that 

it supports massive connectivity, lower latency, and an enhanced cell-edge user 

experience [IZD17]. 

2.3.2 Literature on Reconfigurable Intelligent Surface (RIS) 

An RIS is a surface consisting of electromagnetic material. The surface 

usually consists of a large number of low-cost reflecting elements whose 

properties can be controlled. In a conventional RIS design, the phase of the 

reflection coefficient of each element is controlled to enable modification of the 

propagated waves [XYS+21]. More recently, RIS designs have been proposed to 

enable control of both the phase and the attenuation of each element, providing 

additional degrees of freedom for shaping the resulting wave field [XRC22], 

[IM22]. RIS technology has been proposed for many different types of wireless 

communication scenarios, including NOMA [YXY+21], [XYS+21].  It has been 

shown that the performance of NOMA systems can be improved by increasing 

the number of reflecting elements [LDT+21], and the spectral efficiency can be 

significantly enhanced with RIS-assisted NOMA, compared to NOMA without RIS 

and traditional OMA [YXY+21]. 

The use of RIS has emerged as a unique technology for improving both 

spectral and energy efficiency. An RIS consists of an array of elements whose 

reflective properties can be individually controlled, enabling some degree of 

control of the wireless propagation environment [LLM+21]. In a conventional RIS 

implementation, it is the phase shift of the reflection coefficient of each element 

that is adjusted in order to achieve the desired effect on the wireless channels. 
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More recently, researchers have also studied RIS architectures where both the 

phase shift and the attenuation of the reflection coefficient of each element can 

be individually controlled, so-called absorptive RIS (A-RIS). In our work, the 

energy absorbed by the A-RIS can be refracted to directions on the other side of 

the surface [YXJ+21], [SHB+22] or sampled using an active radio frequency (RF) 

receiver for channel estimation or sensing [XRC+22], [ADS+22]. RIS technology 

has been applied in many different types of wireless communications scenarios, 

including NOMA [YXY+21]. However, while the use of conventional phase-shift-

only RIS has been proposed for NOMA applications with the goal of improving 

spectral efficiency, to our knowledge there is no work reported on using A-RIS 

with NOMA, nor on using RIS to mitigate the impact of external interference (e.g., 

jamming) on NOMA performance. 

2.4 Integrated Backhaul and Access 

The IAB is a new feature in 5G networks that extends coverage by 

efficiently using the spectrum traditionally reserved for access. However, meeting 

the stringent ultra-reliability and low latency (URLLC) requirements for advanced 

5G services presents challenges for the multi-hop network design of IAB. To 

address this, the authors in [YRC22] have suggested a cross-layer design for 

routing and resource allocation under the current 3GPP 5G standards. They 

create a routing problem that minimizes latency while maintaining reliability, 

followed by a reinforcement learning framework to solve the resource allocation 

and routing problem based on local information of each IAB node. They propose 

an entropy-based Reinforcement learning (RL) algorithm with a federated 

learning mechanism to enhance performance and speed up convergence. The 

available resources in IAB networks must be carefully tuned in a complex setting 

that includes directional transmissions, device heterogeneity, and intermittent 

links with varying levels of availability that changes rapidly over time. The authors 

in [ZDF+21] introduced a new approach. They believe that the traditional 

optimization techniques may not be sufficient to provide the best performance in 

these conditions. Therefore, a Deep Reinforcement Learning (DRL) framework 

assisted with Long Short-Term Memory (LSTM) has been proposed to implicitly 

learn the best resource allocation strategy in networks affected by obstacle 

blockages. The introduced framework is based on Column Generation (CG) and 

demonstrates remarkable effectiveness in addressing routing and link scheduling 

in mmWave 5G IAB networks in realistic scenarios. 

A flexible and low-complexity semi-centralized resource allocation scheme 

has been proposed for IAB networks in [PZP+22], which adheres to the 3GPP 

IAB specifications. The solution involves a version of the Maximum Weighted 

Matching (MWM) problem that operates on a spanning tree representing the IAB 

network, with a complexity that is linear in the number of IAB-nodes. To assess 
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its effectiveness, the proposed approach is compared against existing distributed 

methods using end-to-end, full-stack system-level simulations employing a 

3GPP-compliant channel model, protocol stack, and various user applications. 

The presented work in [SM23] has been examined a millimeter-wave 

network that is dynamic and has integrated access and backhaul, where mobile 

relay nodes move to self-configure the wireless backhaul. The focus was on in-

band relaying networks, which operate access and backhaul links on the same 

frequency band, with strict constraints on co-channel interference. In this 

scenario, the authors jointly investigated the intricate problem of dynamic relay 

node positioning, user association, and backhaul capacity allocation. To tackle 

this problem with limited complexity, they employ a hierarchical multi-agent 

reinforcement learning approach with a two-level structure. A high-level policy 

dynamically coordinates mobile relay nodes and defines the backhaul 

configuration for a low-level policy that jointly assigns user equipment to each 

relay and allocates backhaul capacity accordingly. The resulting solution 

automatically adjusts the access and backhaul network based on changes in the 

number of users, traffic distribution, and channel variations.  

The authors in [AH22] present a distributed stochastic approach that 

simultaneously tackles the problems of resource/bandwidth allocation and path 

selection in a multi-hop multi-path IAB mm-wave 5G network. They first propose 

a Directed Acyclic Graph (DAG) topology formation algorithm that performs cell 

search and initial access procedures and disseminates topology information 

across child/parent links. Next, they employ stochastic optimization tools to select 

paths from a resource perspective and investigate the efficiency of the proposed 

scheme in resource utilization. They also analyze the impact of stochastic 

information spread in the topology and probability levels on the performance of 

the scheme. The findings demonstrate that the proposed distributed scheme 

achieves performance like that of an optimal centralized algorithm in joint 

resource allocation and path selection tasks, making it a potential alternative to 

centralized resource management in scenarios where central resource allocation 

is not feasible. 

Looking at some of the previous works on the topic of IAB, we find that 

most of the works defined an optimization problem to reach a specific goal. Due 

to the difficulty of solving the problem with respect to the time complexity, tools 

such as reinforcement learning, stochastic optimization and Heuristic algorithms 

have been proposed. Table 1 shows a brief comparison between some important 

works that have been presented in the literature.  
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Table 1: Comparison between different works in IAB technology. 

 Goal Modelling tool Structure 

[YRC22] Minimizes latency 

Entropy-based 

algorithm with 

Reinforcement learning  

Centralized 

[ZDF+21] 
Maximize the number of 

bits in a frame sent 

Mixed-integer linear 

programming (MILP) - 

Deep Reinforcement 

Learning (DRL) 

Centralized 

[PZP+22] 

Maximum Weighted 

Matching (MWM) 

problem 

Heuristic algorithm to 

find (minimum spanning 

tree) MSP 

Centralized 

[SM23] 

Problem of dynamic 

relay node positioning, 

user association, and 

backhaul capacity 

allocation 

a hierarchical multi-

agent reinforcement 

learning 

Centralized 

[AH22] 

Resource/bandwidth 

allocation and path 

selection 

stochastic optimization Distributed 
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3 Algorithmic Framework 

3.1 Machine Learning-based mmWave Beam Prediction 

In this section, we describe the system model and algorithmic framework 

of our proposed ML based mmWave beam prediction approach. 

3.1.1 System Model 

3.1.1.1 Channel Model 

We consider the downlink mmWave multiple-input multiple-output (MIMO) 

communication system serving a single user, where BS and UE are equipped 

with 𝑀𝑇𝑋 and 𝑀𝑅𝑋 antennas, respectively. Further, assume that a single radio 

frequency (RF) chain is employed at both BS and UE sides. We assume the 

three-dimensional (3D) channel model, where azimuth and elevation angles are 

considered. We consider the clustered channel model with 𝐶 clusters with 𝐿𝑐  per 

cluster. Specifically, the channel matrix 𝐇 ∈ 𝐶𝑀𝑅𝑋×𝑀𝑇𝑋 can be expressed as 

[3GP+22] 

 
H = √

𝑀𝑇𝑋𝑀𝑅𝑋

𝜌𝐿𝑂𝑆
𝛼LOSaR(𝜙LOS

R , 𝜃LOS
R )aT

𝐻(𝜙LOS
T , 𝜃LOS

T ) +

∑ √
𝑀𝑇𝑋𝑀𝑅𝑋

𝜌𝑐
∑ 𝛼𝑐,𝑙aR(𝜙𝑐,𝑙

R , 𝜃𝑐,𝑙
R )aT

𝐻(𝜙𝑐,𝑙
T , 𝜃𝑐,𝑙

T )
𝐿𝑐

𝑙=1

𝐶

𝑐=1

 . 

(3.1) 

 

In this model, the 𝑐-th cluster containing 𝐿𝑐 paths has a pathloss 𝜌𝑐, 

azimuth and elevation angle-of-arrival (AoA) 𝜙𝑐
𝑅, 𝜃𝑐

𝑅  , respectively, and azimuth 

and elevation angle-of-departure (AoD) 𝜙𝑐
𝑇, 𝜃𝑐

𝑇, respectively, while 𝛼𝑐  is the 

complex gain corresponding to the 𝑙-th path in the 𝑐-th cluster. Similar notations 

are used for the LOS path.  Furthermore, 𝒂𝑇 ∈ 𝐶𝑀𝑇𝑋×1  and 𝒂𝑅 ∈ 𝐶𝑀𝑅𝑋×1denote 

the antenna response vectors of BS and UE, respectively. We assume a uniform 

planar array with the following response.  

a(𝜙, 𝜃)

=
1

√𝑁
[1,⋯ , 𝑒𝑗

2𝜋
𝜆

𝑑(𝑦′ sin(𝜙)sin(𝜃)+𝑧′ cos(𝜃)),⋯ , 𝑒
𝑗
2𝜋
𝜆

𝑑((𝑁y−1)sin(𝜙)sin(𝜃)+(𝑁z−1)cos(𝜃))
]𝑇 

              (3.2) 

Here, 𝑦′ and 𝑧′ indicate the antenna element number while 𝜆 and 𝑑 indicate the 

wavelength and the antenna element spacing.  
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3.1.1.2 Beam Training Model 

We assume that phase shifter based analog beamforming is applied, 

where 𝐟 ∈ 𝐶𝑀𝑇𝑋×1 is denoted as the transmitting beam of BS, and 𝐰 ∈ 𝐶𝑀𝑅𝑋×1 is 

denoted as the receiving beam of UE. The transmitting and receiving beams are 

selected from the predefined codebooks 𝑭 and 𝑾, which consist of 𝑁𝑇𝑋 and 𝑁𝑅𝑋 

candidate beams, respectively. The candidate transmitting beam 

𝒇𝑚, 𝑚  ሼ1, 2, . . . , 𝑁𝑇𝑋ሽ, and receiving beam 𝒘𝑛, 𝑛  ሼ1, 2, . . . , 𝑁𝑅𝑋ሽ, can be written 

respectively as 

f = {aT (𝜙
1

T
, 𝜃1

T
) , aT (𝜙

2

T
, 𝜃2

T
) ,⋯ , aT (𝜙

𝑇𝑋

T
, 𝜃𝑇𝑋

T
)}, 

w = ሼaR(𝜙
1

R
, 𝜃1

R
),aR(𝜙

2

R
, 𝜃2

R
),⋯ ,aR(𝜙

𝑅𝑋

R
, 𝜃𝑅𝑋

R
)ሽ.                  (3.3) 

Here  𝜙
1

T
(𝜃1

T
) and 𝜙

1

R
(𝜃1

R
) indicate the azimuth (elevation) direction for transmit 

and receive beam, respectively. Given the channel matrix 𝑯 and beam pair ሼ𝒇,𝒘ሽ, 

the received signal 𝑦 can be written as 

𝑦 = √𝑃w𝐻Hf𝑥 +w𝐻𝜼                                              (3.4) 

where 𝑃 is the transmit power and 𝑥 is the transmitted signal, while 𝛈 ∈ 𝐶𝑀𝑅𝑋×1 

denotes the additive white Gaussian noise (AWGN).  

Beam training aims to find the optimal beam pair ሼ𝒇𝑚∗ , 𝒘𝑛∗  ሽ with the 

maximum beamforming gain, which can be formulated as the following 

optimization problem: 

ሼ𝑚∗, 𝑛∗ሽ = argmax
𝑚∈ሼ1,2,⋯,𝑁𝑇𝑋ሽ,

𝑛∈ሼ1,2,⋯,𝑁𝑅𝑋ሽ

ȁ𝒘𝑛
𝐻𝑯𝒇𝑚ȁ2.                                (3.5) 

A straightforward scheme of beam training to solve the above optimization 

is the brute-force beam search, where all the candidate transmitting and receiving 

beams are swept to find the beam pair with the maximum power of the received 

signal. However, this scheme requires 𝑁𝑇𝑋𝑁𝑅𝑋 measurements, which leads to 

excessively huge training overhead. To tackle this problem, the two-level beam 

search based on a hierarchical multi-resolution codebook can be considered, 

where the codebook consists of the wide beam codewords in the first level and 

the narrow beam codewords in the second level. Based on the hierarchical multi-

resolution codebook, the beam search is divided into two levels. The first-level 

searches for coarse beam alignment based on the wide beam codebook, given 

by: 
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ሼ𝑚w
∗ , 𝑛w

∗ ሽ = argmax
𝑚w∈ሼ1,2,⋯,𝑁𝑇𝑋/𝑠𝑇𝑋ሽ,

𝑛w∈ሼ1,2,⋯,𝑁𝑅𝑋/𝑠𝑅𝑋ሽ

ȁ𝒘𝑤,𝑛
𝐻 𝑯𝒇𝑤,𝑚ȁ2.                         (3.6) 

Here, 𝒇𝑤 and 𝒘𝑤 indicate the beamforming vector corresponding to wider 

transmit and receive beam, respectively. The first level search requires 

𝑁𝑇𝑋𝑁𝑅𝑋/𝑠𝑇𝑋𝑠𝑅𝑋 measurements, where 𝑠𝑇𝑋 defines the number of narrow beams 

within each wide beam. The second-level search confirms the ‘optimal’ narrow 

beam pair in the range of the selected wide beam pair, given by: 

ሼ𝑚∗, 𝑛∗ሽ = argmax
𝑚∈ሼ(𝑚w

∗ −1)𝑠TX+1,⋯,𝑚w
∗ 𝑠TXሽ,

𝑛∈ሼ(𝑛w
∗ −1)𝑠RX+1,⋯,𝑛w

∗ 𝑠RXሽ

ȁ𝒘𝑤,𝑛
𝐻 𝑯𝒇𝑤,𝑚ȁ2.               (3.7) 

The second-level search needs further 𝑠𝑇𝑋𝑠𝑅𝑋 measurements. Hence, the 

two-level beam search requires 
𝑁𝑇𝑋𝑁𝑅𝑋

𝑠𝑇𝑋𝑠𝑅𝑋
+ 𝑠𝑇𝑋𝑠𝑅𝑋 measurements, which is 

significantly smaller than that imposed by the brute-force beam search. Another 

overhead-reducing scheme is the interactive beam search, which selects the 

beams at BS and UE sides separately. Specifically, with UE antennas set to be 

the omni-directional pattern, BS sweeps all candidate transmitting beams to find 

the one with the maximum beamforming gain. Then with this ‘optimal’ transmitting 

beam, UE sweeps all candidate receiving beams to find the beam with the 

maximum beamforming gain. In other words, the ‘optimal’ beam pair are obtained 

by solving the following two optimization problems separately: 

𝑚∗ = argmax
𝑚∈ሼ1,2,⋯,𝑁𝑇𝑋ሽ

ȁ𝑯𝒇𝑚ȁ2, 

𝑛∗ = argmax
𝑛∈ሼ1,2,⋯,𝑁𝑅𝑋ሽ

ȁ𝒘𝑛
𝐻𝑯𝒇𝑚∗ȁ2.                                 (3.8) 

This scheme requires 𝑁𝑇𝑋  +  𝑁𝑅𝑋 measurements, which is much lower than the 

brute-force search. 

3.1.2 A Low-Complexity Machine Learning Design for mmWave Beam 

Prediction 

As indicated above, the beam search can be implemented at BS and UE 

separately. For simplicity, we investigate the selection of the transmitting beams 

at BS side, where the UE beam is assumed to be ideal. 

3.1.2.1 Problem Formulation and Algorithmic Framework 

To reduce the beam training overhead, we propose to train a small number 

of candidate beams and calibrate the beam direction according to the received 

signals [HM+19]. How to find properly trained beams that achieve high accuracy 

under the given training overhead is crucial.  Motivated by the two-level beam 
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search with low training overhead where the wide beam codebook can cover the 

whole angular space, we propose to measure the reference signal received 

power (RSRP) of wide beams for calibrating the beam direction [CRJ19]. 

Additionally, as wider, and narrow beams cover the same angular direction, there 

exists a spatial correlation between wide and narrow beams as shown in Figure 

4 [NKD15]. For convenience, we define the received signal of the 𝑚-th candidate 

wide beam as 𝑦𝑤,𝑚 and its RSRP as 𝑅𝑆𝑅𝑃𝑤,𝑚 . Since the narrow beam codebook 

enjoys higher angular resolution, the proposed calibrated beam training scheme 

aims to predict the index of the optimal narrow beam at BS side 𝑚∗ based on the 

received signal RSRP. Because the number of candidate narrow beams is 

limited, the prediction can be formulated as a multi-classification task, where each 

classified category corresponds to one candidate narrow beam. Mathematically, 

the prediction model can be represented by the classification function 𝑓1(·) as  

𝑚∗  =  𝑓1(𝑅𝑆𝑅𝑃𝑤),         𝑚∗  ሼ1, 2, . . . , 𝑁𝑇𝑋}                           (3.9) 

However, it is difficult to implement this prediction by conventional estimation 

methods due to the non-linear relation between channel directivity and received 

RSRP. Consequently, deep learning with strong ability to learn complex nonlinear 

relations is utilized to implement the prediction. 

 

Figure 4: Spatial angular correlation between wide and narrow beams. 

3.1.2.2 Proposed Machine Learning Model Design for mmWave Beam 

Prediction 

In this section, we provide details of our ML model design and its 

corresponding inputs and outputs. Our proposed scheme consists of three 

stages: training, validation, and inference. In the training stage, training data are 

collected to train the deep learning model, where each sample comprises a RSRP 
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vector as the model input and the index of the corresponding optimal narrow 

beam as the classification label, which can be obtained by conventional beam 

training schemes and fed back to BS. In the validation phase, the parameters of 

the ML model are fine tuned. After the model is well-trained and well-validated 

with sufficient data, it switches to the inference stage. In this stage, BS only 

perform the wide beam search, and the corresponding received signals are 

leveraged to predict the optimal narrow beam by the well-trained model as shown 

in Figure 5. Thus, the narrow beam search is avoided, and the overhead of beam 

training is reduced considerably. 

 

Figure 5: Machine learning model training, validation, and inference. 

Artificial neural network (ANN) is adopted to implement the prediction due 

to its outstanding performance in classification tasks. The proposed ANN based 

model is depicted in Figure 6. The proposed model consists of input, output, and 

a SoftMax layer. The input layer of our proposed network consists of 
𝑁𝑇𝑋

𝑆𝑇𝑋
 nodes 

and takes RSRP values of the wider beams as its input. The output layer consists 

of 𝑁𝑇𝑋 nodes. Finally, a softmax layer is introduced, which returns the probability 

of each narrower beam being the best. Finally, the narrow beam with the 

maximum predicted probability is selected, i.e., 

𝑚
^ ∗ = argmax

𝑚∈ሼ1,2,⋯,𝑁𝑇𝑋ሽ
𝒫
^

𝑚.                                       (3.10) 

The predicted probabilities provide the qualities of beams, and a beam with larger 

probability is predicted to enjoy higher beamforming gain over other beams with 

smaller probabilities. Further, we consider mean squared error as the loss 

function and the model is trained via Adam optimizer. 
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Figure 6: Proposed low-complexity design for ML-based mmWave beam prediction. 

3.2 SI and UE Channel Estimation 

To estimate the channels of UEs and SI, both downlink and uplink UEs, 

along with transmit antennas at the BS, transmit pilot signals to the receive 

antenna at the BS. We assume that the received SI signal power remains 

stronger than the received UE signal power, even after SI cancellation in the 

propagation domain. Hence, our approach involves initially estimating the SI 

channel and subsequently subtracting the estimated SI signal from the received 

pilot signal to estimate the UE channel. 

The received pilot signal at receive antenna arrays for SI channel estimation 

will be: 

𝐘𝐒𝐈 = √𝑆𝑁𝑅𝑆𝐼𝐇𝐒𝐈𝐅𝐗𝐒𝐈 + √𝑆𝑁𝑅𝑈𝐸𝐇𝐔𝐄𝐗𝐔𝐄 + 𝐍,                          (3.11) 

where 𝐘𝐒𝐈 ∈ ℂ𝑁𝑟×𝜏 is the received pilot signal at receive antennas of BS during 𝜏 

pilot transmissions.  𝐗𝐔𝐄 ∈ ℂ𝐾×𝜏 is the transmitted pilot signal from 𝐾 UEs,  𝐗𝐒𝐈 ∈

ℂ𝜏×𝜏 is a diagonal matrix whose diagonal elements are transmitted pilot signals 

from transmit antennas at BS,  𝐅 ∈ ℂ𝑁𝑡×𝜏 is the precoding matrix of transmit 

antennas of BS, and 𝐇𝐔𝐄 = [𝐡𝟏
(𝐮)

, 𝐡𝟐
(𝐮)

, … , 𝐡𝐊𝐮

(𝐮)
, 𝐡𝟏

(𝐝)
, 𝐡𝟐

(𝐝)
, … , 𝐡𝐊𝐝

(𝐝)
] ∈ ℂ𝑁𝑟×𝐾 is 

concatenated uplink and downlink channels, where 𝑘-th column is the channel of 

𝑘-th uplink or downlink UE to the receive antenna at BS. We assume all UEs have 

the same transmit power denoted by pUE and pSI is the transmit power from 

transmit antenna arrays. 𝑆𝑁𝑅𝑆𝐼 and 𝑆𝑁𝑅𝑈𝐸 are defined as 

𝑆𝑁𝑅𝑆𝐼 =
𝑝𝑆𝐼

𝜎𝑛
2
 

𝑆𝑁𝑅𝑈𝐸 =
𝑝𝑈𝐸

𝜎𝑛
2 ,                                           (3.12) 

where 𝜎𝑛
2 is the noise variance. The matrix 𝐍 ∈ ℂ𝑁𝑟×𝜏 is additive noise which is 

comprised of independent and identically distributed (i.i.d.) elements following a 
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zero-mean unit variance Gaussian distribution. Note that for the pilot dimension 

is 𝜏 = 𝑁𝑡 + 𝐾, the received pilot signal for SI channel estimation will be: 

𝐘𝐒𝐈 = √𝑆𝑁𝑅𝑆𝐼𝐇𝐒𝐈𝐅𝐗𝐒𝐈 + 𝐍, 𝜏 = 1,2, … ,𝑁𝑡.                     (3.13) 

We apply the orthogonal pilot code book for both precoded SI signal from transmit 

antenna arrays and UEs during pilot transmission. Specifically, we utilize the 

discrete Fourier transform (DFT) pilot codebook, e.g., 𝐅𝐗𝐒𝐈 = 𝐖𝑁𝑡×𝜏, 𝐗𝐔𝐄 =

𝐖𝐾×𝜏, where, 

𝐖𝑁×𝑀 =
1

√𝑁

[
 
 
 
 
 
1 1 1 ⋯ 1
1 𝜔 𝜔2 ⋯ 𝜔𝑀−1

1 𝜔2 𝜔4 ⋯ 𝜔2(𝑀−1)

1 𝜔3 𝜔6 ⋯ 𝜔3(𝑀−1)

⋮ ⋮ ⋮ ⋱ ⋮
1 𝜔𝑁−1 𝜔2(𝑁−1) ⋯ 𝜔(𝑁−1)(𝑀−1)]

 
 
 
 
 

                     (3.14) 

where 𝜔 = 𝑒−2𝜋𝑗/𝑀. We assume that SI is sufficiently canceled out in the 

propagation domain and the received signal at the baseband does not exceed 

the dynamic range of ADCs. We refer to the propagation domain SI cancelation 

before the digital domain as 𝜖𝑆𝐼, therefore, we re-write the SI channel as: 

𝐇𝐒𝐈 = √𝜖𝑆𝐼√
𝜅

𝜅+1
𝐇𝐒𝐈,𝐍𝐅 + √

1

𝜅+1
𝐇𝐒𝐈,𝐅𝐅.                            (3.15) 

Note that the SI cancelation in the propagation domain can only suppress 

the near field channel from the transmit antenna arrays to the receive antenna 

arrays. In the digital domain after acquiring the estimate of the SI channel, the 

residual near-field and far-field SI channels can be further suppressed. 

After SI channel estimation, we use the estimated SI channel to cancel out 

the SI signal power from the received pilot signal to estimate the UE channel. 

Therefore, the received pilot signal for UE channel estimation will become: 

𝐘𝐔𝐄 = √𝑆𝑁𝑅𝑈𝐸𝐇𝐔𝐄𝐗𝐔𝐄 + √𝑆𝑁𝑅𝑆𝐼𝐄𝐒𝐈𝐅𝐗𝐒𝐈 + 𝐍,                  (3.16) 

where 𝐄𝐒𝐈 = 𝐇𝐒𝐈 − �̂�𝐒𝐈 is the SI cancelation error, and �̂�𝐒𝐈 is the estimated SI 

channel. 

For the pilot dimension 𝜏 = 𝑁𝑡 + 𝐾, the received pilot signal does not 

contain the signal from SI channel, thus, 

𝐘𝐔𝐄 = √𝑆𝑁𝑅𝑈𝐸𝐇𝐔𝐄𝐗𝐔𝐄 + 𝐍, 𝜏 = 1,2, … , 𝐾                      (3.17) 
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Typically, the channel of nearby UEs is correlated, and for the pilot dimension 𝜏 =

𝑁𝑡 and 𝜏 = 𝐾, the residual error from SI cancellation introduces further correlation 

in the received pilot signals used for UE channel estimation. Therefore, we 

estimate the entire UE channel matrix, denoted as 𝐇𝐔𝐄, to take advantage of the 

correlation resulting from imperfect SI cancellation. This allows us to leverage the 

additional information for a more accurate estimation of the UE channels. 

3.2.1 LS, MMSE, NN-based Channel Estimation 

In this section, we present three channel estimation methods: LS, MMSE, 

and NN-based estimators for both SI and UE channels. First, we will introduce 

the LS and MMSE channel estimators. Subsequently, we present channel 

estimation using NN for estimating the SI and UE channels. For SI channel 

estimation, we correlate the received pilot signal with the pilot matrix transmitted 

from transmit antenna arrays, therefore, we define, 

�̂�𝐒𝐈 = 𝐘𝐒𝐈𝐖𝐍𝐭×𝜏
𝐇 .                                             (3.18) 

Similarly for UE channel estimation, 

�̂�𝐔𝐄 = 𝐘𝐔𝐄𝐖𝐊×𝜏
𝐇 .                                           (3.19) 

3.2.1.1 LS Channel Estimator 

The LS channel estimator is the simplest channel estimation technique 

that does not need any prior knowledge about channel statistics and finds the 

channel coefficients that minimize the mean square error (MSE) between the 

estimated channel and the received pilot signal. The LS channel estimator can 

be calculated as follows: 

�̂�𝐪,𝐋𝐒 =
1

𝜏√𝑆𝑁𝑅𝑞
�̂�𝐪,                                      (3.20) 

where 𝑞 ∈ ሼ𝑆𝐼, 𝑈𝐸ሽ. 

3.2.1.2 MMSE Channel Estimator 

The MMSE is a Bayesian estimator that aims to minimize the MSE 

between the estimated channel and the true channel. The MMSE channel 

estimation technique offers improved performance compared to LS estimator. It 

takes into account the statistical properties of the channel and noise, resulting in 

better estimation accuracy, especially in the presence of noise and interference. 

To derive the MMSE channel estimator, we rewrite the received pilot signal for SI 

and UE channel estimation in a vector form: 
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𝑣𝑒𝑐(𝐘𝐒𝐈) = √𝑆𝑁𝑅𝑆𝐼�̃�𝐒𝐈𝑣𝑒𝑐(𝐇𝐒𝐈) + √𝑆𝑁𝑅𝑈𝐸�̃�𝐔𝐄𝑣𝑒𝑐(𝐇𝐔𝐄) + 𝑣𝑒𝑐(𝐍) 

𝑣𝑒𝑐(𝐘𝐔𝐄) = √𝑆𝑁𝑅𝑈𝐸�̃�𝐔𝐄𝑣𝑒𝑐(𝐇𝐔𝐄) + √𝑆𝑁𝑅𝑆𝐼�̃�𝐒𝐈𝑣𝑒𝑐(𝐄𝐒𝐈) + 𝑣𝑒𝑐(𝐍)   (3.21) 

where �̃�𝐒𝐈 = (𝐅𝐗𝐒𝐈)
𝑇 ⊗ 𝐈𝐍𝐫

, �̃�𝐔𝐄 = (𝐗𝐔𝐄)
𝑇 ⊗ 𝐈𝐍𝐫

. The channel covariance matrix is 

defined as follows: 

𝐑𝐪 = 𝔼[𝑣𝑒𝑐(𝐇𝐪)𝑣𝑒𝑐(𝐇𝐪)
𝐻].                                 (3.22) 

The channel covariance matrix for the MIMO channel can be related to the 

transmit and receive covariance matrix via the Kronecker product: 

𝐑 = 𝐑𝐭 ⊗ 𝐑𝐫                                              (3.23) 

where 𝐑𝐭 and 𝐑𝐫 are the transmit and receive covariance matrices. The MMSE 

channel estimator of the 𝐇𝐪 minimizes the MSE 𝔼ሼȁȁ𝐇𝐪 − �̂�𝐪,𝐌𝐌𝐒𝐄ȁȁ
2ሽ,  where the 

�̂�𝐪,𝐌𝐌𝐒𝐄  is the MMSE estimate of 𝐇𝐪, where it is given by: 

𝑣𝑒𝑐(�̂�𝐪,𝐌𝐌𝐒𝐄) = 𝐑𝐇𝐪𝐘𝐪
𝐑𝐘𝐪

−1𝑣𝑒𝑐(𝐘𝐪)                          (3.24) 

where 

𝐑𝐇𝐪𝐘𝐪
=  𝔼[𝑣𝑒𝑐(𝐇𝐪)𝑣𝑒𝑐(𝐘𝐪)

𝐻],                                (3.25) 

𝐑𝐘𝐪
=  𝔼[𝑣𝑒𝑐(𝐘𝐪)𝑣𝑒𝑐(𝐘𝐪)

𝐻].                                  (3.26) 

Now, we can formulate the MMSE estimates of SI and UE channels as in the 

following equations: 

 𝑣𝑒𝑐(�̂�𝐒𝐈,𝐌𝐌𝐒𝐄) = √𝑆𝑁𝑅𝑆𝐼𝐑𝐒𝐈�̃�𝐒𝐈(𝑆𝑁𝑅𝑆𝐼�̃�𝐒𝐈𝐑𝐒𝐈�̃�𝐒𝐈
𝐻

+ 𝑆𝑁𝑅𝑈𝐸�̃�𝐔𝐄𝐑𝐔𝐄�̃�𝐔𝐄
𝐻

+ 𝐈𝑁𝑡𝑁𝑟
)−1𝑣𝑒𝑐(𝐘𝐒𝐈) 

(3.27) 

 𝑣𝑒𝑐(�̂�𝐔𝐄,𝐌𝐌𝐒𝐄 = √𝑆𝑁𝑅𝑈𝐸𝐑𝐔𝐄�̃�𝐔𝐄(𝑆𝑁𝑅𝑆𝐼�̃�𝑈𝐸𝐑𝐔𝐄�̃�𝐔𝐄
𝐻

+ 𝑆𝑁𝑅𝑆𝐼�̃�𝐒𝐈𝐑𝐄�̃�𝐒𝐈
𝐻

+ 𝐈𝑁𝑡𝑁𝑟
)−1𝑣𝑒𝑐(𝐘𝐔𝐄) 

(3.28) 

where 𝐑𝐄 represents the error covariance matrix of SI cancelation, which can be 

calculated as: 

 𝐑𝐄 = 𝐑𝐒𝐈 − 𝑆𝑁𝑅𝑆𝐼𝐑𝐒𝐈�̃�𝐒𝐈
𝐻
(𝑆𝑁𝑅𝑆𝐼�̃�𝐒𝐈𝐑𝐒𝐈�̃�𝐒𝐈

𝐻
+ 𝑆𝑁𝑅𝑈𝐸�̃�𝑈𝐸𝐑𝐔𝐄�̃�𝑈𝐸

𝐻

+ 𝐈𝑁𝑡𝑁𝑟
)−1�̃�𝐒𝐈𝐑𝐒𝐈 

(3.29) 
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3.2.1.3 NN Channel Estimator 

Although conventional channel estimation techniques such as MMSE can 

leverage the spatial correlation present in large antenna arrays, they require prior 

knowledge of the channel covariance matrix and are computationally intensive 

due to matrix inversion involving a large matrix. In various fields of research, it 

has been demonstrated that DNNs can possibly utilize the inherent structure of 

data by solely observing a sufficient number of data points. Different network 

architectures, such as fully convolutional neural networks (FCNNs), convolutional 

neural networks (CNNs), recurrent neural networks (RNNs), etc., can be utilized 

depending on the characteristics of the data. For instance, CNNs are suitable for 

addressing problems with feature correlation and local dependencies among 

them, while RNNs are more effective for handling memory-based features like 

time series. 

It has been shown in various studies that the wireless channel with large 

antenna arrays is spatially correlated, see e.g., [SE+20]. To exploit this spatial 

correlation for channel estimation, we employ CNNs which are well known for 

capturing the local dependency of features among data points. 

The input to the CNN is the correlated received pilot signal, i.e., �̂�𝐪, and 

the output is the estimated channel, �̂�𝐪,𝐍𝐍, 𝑞 ∈ ሼ𝑆𝐼, 𝑈𝐸ሽ. In convolutional layers, 

we apply a 3 × 3 window size sliding through the whole input features with a unit 

stride size. Different numbers of convolutional hidden layers are employed, and 

each layer applies a different number of filters to extract features from the 

successive windows of its input features. The number of filters and hidden layers 

in the convolutional layers will be carefully designed in Section 4.2. 

To keep the dimension of the output and the input unchanged, we utilize 

padding after convolution processing. We apply rectified linear units (ReLU) 

functions as the activation function for the hidden layers, while for the output 

layer, the linear activation function is used. Since tensors do not support complex 

operations, the input to the CNN is converted to three-dimensional tensors, where 

the third dimension stores the real and imaginary parts of the complex data 

samples. Therefore, if we define 𝐗𝐭𝐫 and 𝐘𝐭𝐫 as the input and labels of the CNN 

during training, we have: 

𝐗𝐭𝐫[: , : ,0] = ℜሼ�̂�𝐪ሽ, 

𝐗𝐭𝐫[: , : ,1] = ℑሼ�̂�𝐪ሽ, 

𝐘𝐭𝐫[: , : ,0] = ℜሼ𝐇𝐪ሽ, 
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𝐘𝐭𝐫[: , : ,1] = ℑሼ𝐇𝐪ሽ.                                       (3.30) 

For training of CNN, a dataset consisting of 𝑀𝑡𝑟 samples is generated with 

(�̂�𝐪
(𝑛)

, 𝐇𝐪
(𝑛)) representing the 𝑛-th sample. We employ supervised learning, 

where 𝐇𝐪 is regarded as the label during training. We apply min-max scaling to 

scale the dataset in the range (0,1). Such normalization is highly recommended 

for training machine learning models. We consider the MSE loss function, and 

the objective of training is minimizing this loss function: 

MSE =
1

𝑀𝑡𝑟
∑ ȁ

𝑀𝑡𝑟
𝑖=1 ȁ𝐗𝐭𝐫 − 𝐘𝐭𝐫ȁȁ𝐹

2.                           (3.31) 

3.2.2 RX-TX Channel Mapping 

Since in separate antenna configuration, two different antenna arrays are 

utilized for uplink reception and downlink transmission, uplink and downlink 

channel experiences different channel realization. So far, we have assumed that 

RX arrays at BS receive pilot signals from both uplink and downlink UEs and 

estimate all channels from both uplink and downlink UEs to the RX arrays. For 

downlink transmission, transmit antenna arrays need the channel state 

information (CSI) of the transmit antenna arrays to downlink UEs. The transmit 

antenna arrays are not capable of receiving and processing pilot signals and 

implementing a separate receive RF chain and ADC at the transmit antenna 

arrays for just pilot processing due to the cost. As a result, we need to somehow 

map the channel between the RX arrays and downlink UEs to the TX array and 

the downlink UEs. Due to the multi-path effect and random scattering 

environment, it is not straightforward to derive mathematically the relation of such 

mapping. More specifically, if we assume that the RX-UE channel is: 

𝐡𝐔𝐄,𝐑𝐗 = √
1

𝑁𝑟
√𝛽 ∑ 𝛼𝑖𝐚𝐚(𝜃𝐢)

𝑃−1

𝑖=0
,                          (3.32) 

aa(𝜃) is the uniform linear array (ULA) responses of receive antennas, given by 

𝐚𝑎(𝜃) = √
1

𝑁𝑟
[1, … , exp (𝑗2𝜋

𝑑

𝜆
(𝑁𝑟 − 1)sin𝜃)]

𝑇

,                 (3.33) 

𝜃 is the angle of arrival (AoA) to the receive antenna arrays at BS, 𝑑 and 𝜆 are 

the antenna spacing and wavelength, respectively.  We assume AoA follow the 

local scattering model with a uniform distribution [−
𝜃𝐴𝑆

2
,
𝜃𝐴𝑆

2
], where 𝜃𝐴𝑆 is the 

angular spread (AS) of the multi-path components.  

As shown in the following Figure 7, transmit and receive arrays are at a 

close distance in the order of a few wavelengths from each other. Therefore, the 
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channel amplitude is the same for both receive and transmit antenna arrays, while 

the antenna separation will create a delay depending on the AoA of each path. 

Thus, the TX-UE channel will be: 

𝐡𝐔𝐄,𝐓𝐗 = √
1

𝑁𝑡
√𝛽 ∑ 𝛼𝑖𝐚𝐝(𝜃𝐢)𝑒

𝑗
2𝜋

𝜆
𝑙𝑐𝑜𝑠𝜃𝑖

𝑃−1

𝑖=0
,                        (3.34) 

ad(𝜃) is ULA responses of transmit antennas, given by 

𝐚𝑑(𝜃) = √
1

𝑁𝑡
[1, … , exp (𝑗2𝜋

𝑑

𝜆
(𝑁𝑡 − 1)sin𝜃)]

𝑇

,                  (3.35) 

𝜃 is the angle of departure (AoD) from the transmit antenna arrays at BS. 

Similarly, we assume AoD follow the local scattering model with a uniform 

distribution [−
𝜃𝐴𝑆

2
,
𝜃𝐴𝑆

2
]. 

 

Figure 7: Phase shift between receive and transmit antenna arrays in separate antenna 

configuration in full-duplex BS. 

The mathematical relationship between 𝐡𝐔𝐄,𝐓𝐗 and 𝐡𝐔𝐄,𝐑𝐗 is not well-

defined due to the random AoA and the effects of multi-path propagation. Based 

on universal theory approximation [KM+89], any feedforward neural network is 

capable of approximating any continuous function. This theory suggests that, 

given enough computational resources and data, it is possible to build machine 

learning models that can accurately approximate any function that maps input to 

output. Therefore, universal theory approximation inspires us to seek if it is 

possible to map the channel of RX antenna arrays and downlink UEs to the 

channel of TX antenna arrays and downlink UEs. Furthermore, recent studies 

[AA19] have demonstrated the existence of a space mapping function that can 

effectively map the channel from one set of antenna arrays to another. As a result, 
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we employ a NN to approximate this mapping function based on the principles of 

universal theory approximation. 

To accomplish this, we utilize an FCNN similar to the network used for 

estimating UE channels. Similar to CNN, we explore different numbers of hidden 

layers with the ReLU activation function in Section 4.2. The input for FCNN is the 

channel between receive antenna array and UEs and the output is the channel 

between transmit antenna array and UEs. Therefore, for the training of FCNN, 

we gather Mtr samples of 𝐡𝐔𝐄,𝐑𝐗 as the input and 𝐡𝐔𝐄,𝐓𝐗 as the corresponding 

label. Again, we apply min-max normalization and MSE loss function to optimize 

the mapping from the channel of RX arrays and Ues to the channel of TX arrays 

and Ues. We create the following data samples as the input and label of FCNN 

to work with real-value tensors, 

𝐱𝐭𝐫[0: 𝑁𝑟] = ℜ{𝐡𝐔𝐄,𝐑𝐗}, 

𝐱𝐭𝐫[𝑁𝑟: 2𝑁𝑟] = ℑሼ𝐡𝐔𝐄,𝐑𝐗ሽ, 

𝐲𝐭𝐫[0: 𝑁𝑟] = ℜሼ𝐡𝐔𝐄,𝐓𝐗ሽ, 

𝐲𝐭𝐫[𝑁𝑟: 2𝑁𝑟] = ℑሼ𝐡𝐔𝐄,𝐓𝐗ሽ.                                   (3.36) 

 

3.3 RIS-NOMA Network 

 In this section, we first describe the system and signal model for our 

considered RIS-NOMA system. 

3.3.1 System Model 

We consider an uplink transmission RIS-NOMA system where the BS is 

equipped with a single antenna, an RIS with 𝑁 elements, a jammer with 𝑀 

antennas, and two single antenna users using PD-NOMA, as shown Figure 8. The 

received signal at the BS can be written as:  

 

𝑟 = ∑(hi + 𝐟T𝚽𝐠i)xi

2

i=1

   + (𝐡j
T + 𝐟T𝚽𝐆j)𝐱j + nr , 

                                                     

(3.37) 

where ℎ𝑖 ∈  ℂ1×1 denotes the direct channels between the users and the BS, 𝑥𝑖 

is the symbol transmitted by user 𝑖, 𝐟 ∈  ℂ1×1 denotes the channel vector between 

the RIS and the BS, 𝚽 = 𝑑𝑖𝑎𝑔ሼ𝑒𝑗𝜃1 , 𝑒𝑗𝜃2 , … , 𝑒𝑗𝜃𝑁 ∈ ℂ𝑁×𝑁ሽ is the diagonal matrix 

containing the RIS phase-shifts, 𝜃𝑛 ∈ [0, 2𝜋] is the phase shift of the 𝑛-th 
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reflecting elements, 𝒈𝑖 ∈  ℂ𝑁×1 denotes the channel vector between user 𝑖 and 

the RIS, 𝐡j ∈  ℂ𝑀×1 denotes the channel vector between the jammer and the BS, 

𝐆j ∈  ℂ𝑁×𝑀 denotes the channel matrix between the jammer and RIS, 𝐱j ∈  ℂ𝑀×1 

is the signal transmitted by the jammer, and 𝑛𝑟~𝐶𝑁(0, 𝜎2) is the AWGN. We 

define the transmit power of each user as 𝑝𝑖 = 𝐸(ȁ𝑥𝑖ȁ
2). 

Assuming that 𝑈𝐸1 has the strongest channel and using a sufficiently large 

transmit power level 𝑝1 fulfilling the condition in  Figure 3,  𝑝1ȁℎ1ȁ
2 > 𝑝2ȁℎ2ȁ

2, the 

BS would first decode the signal for 𝑈𝐸1 treating the interference by the signal 

from 𝑈𝐸2 as AWGN, and then subtracting it from the received signal 𝑟 when 

decoding the signal from 𝑈𝐸2 . Thus, the signal to interference plus noise ratio 

(SINR) of 𝑈𝐸1  is given by, 

𝛾1 =
𝑝1 ∣ ℎ1 + 𝐟𝑇𝚽𝐠1 ∣2

𝑝2 ∣ ℎ2 + 𝐟𝑇𝚽𝐠2 ∣2+ 𝜎j
2 + 𝜎2

 . 
                                                     

(3.38) 

where 𝜎j
2 denotes the power of the jammer signal received by the BS. This term 

will be derived in subsection 0 under the assumption of perfect SIC of the 𝑈𝐸1  

signal, i.e., no error propagation, the SINR for 𝑈𝐸2 can be written as 

𝛾2 =
𝑝2∣ℎ2+𝐟𝑇𝚽𝐠2∣2

𝜎j
2+𝜎2  . 

                                                     

(3.39) 

 

Figure 8: Illustration of RIS-NOMA aided two users uplink communication. 
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3.3.2 Absorptive RIS 

As mentioned above, recent work has considered RIS implementations in 

which not all energy is reflected. In prior work, the non-reflected energy is either 

transmitted or ‘’refracted'' to the other side of the RIS, or it is demodulated and 

sampled for channel estimation or sensing purposes. Here, we simply assume 

that the RIS absorbs an adjustable fraction of the incoming energy at each 

element, without assuming that the absorbed energy is used for any other 

purpose. We will see that the ability to adjust the magnitude of the reflected power 

at each RIS element provides additional degrees of freedom (DoFs) that are 

particularly useful in situations where interference mitigation is required. 

Mathematically, the A-RIS model assumes that the reflection coefficient of each 

RIS element can be described as 𝛽𝑛𝑒𝑗𝜃𝑛 ,  where 0 ≤ 𝛽𝑛 ≤ 1 describes the 

amplitude of the reflected signal component. Such a constraint has numerical 

advantages as it is convex. In practice, the value of 𝛽𝑖, like 𝜃𝑛, may have to be 

quantized, and the two variables are very likely to be coupled, meaning that 

changes to one will affect the other. For this initial study, we ignore such effects 

to investigate the potential gains in an idealized scenario. 

3.3.3 Smart Jammer Modeling 

We assume a ‘’smart’’ jammer that is aware of Φ and the CSI of all the 

channels used by the jammer, i.e., 𝐡j, 𝐟, 𝐆j, and whose goal is to choose 𝒙j  such 

that the interference power at the BS is maximized.  In other words, the jammer 

designs 𝒙j  based on the following problem: 

max    
𝐱j

‖(𝐡j
T + 𝐟T𝚽𝐆j)xj‖.    s.t.    E(‖xj‖

2) ≤ Pj                                                      

(3.40) 

where Pj is the per antenna jammer transmit power. The solution to this problem 

is 𝐱j = (√Pj/𝜌)(𝐡j
T + 𝐟T𝚽𝐆j)

H, where 𝜌 = ‖𝐡j
T + 𝐟T𝚽𝐆j‖. Thus, the term due to 

jamming in the denominator of the SINR expressions (3.35) and (3.36) becomes: 

𝜎j
2 = Pj‖𝐡j

T + 𝐟T𝚽𝐆j‖
2.                                                      

(3.41) 

3.3.4 Optimization Problem 

There are several ways to illustrate the benefit of the A-RIS in the problem 

under consideration. Here, we study the problem of minimizing the total transmit 

power of the users such that given SINR quality-of-service constraints of the 

users are met. The problem can be formulated mathematically as follows: 
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𝑚𝑖𝑛 ( 𝑝1 + 𝑝2 ) such that  

𝐂𝟏: 𝑝1 ≥ 0 

𝐂𝟐: 𝑝2 ≥ 0 

 

𝐂𝟑:
𝑝1 ∣ ℎ1 + 𝐟𝑇𝚽𝐠1 ∣2

𝑃j‖𝐡𝑗
𝑇 + 𝐟𝑇𝚽𝐆j‖2 + 𝑝2 ∣ ℎ2 + 𝐟𝑇𝚽𝐠2 ∣2+ 𝜎2

≥ 𝑇1 

𝐂𝟒:
𝑝2 ∣ ℎ2 + 𝐟𝑇𝚽𝐠2 ∣2

𝑃j‖𝐡𝑗
𝑇 + 𝐟𝑇𝚽𝐆j‖

2 + 𝜎2
≥ 𝑇2 

𝐂𝟓: 0 ≤ 𝛽𝑛 ≤ 1, 𝑛 = 1,⋯ ,𝑁 

𝐂𝟔: 0 ≤ 𝜃𝑛 ≤ 2𝜋, 𝑛 = 1,⋯ ,𝑁 

                                                  

(3.42) 

 

where the constraints 𝐂𝟏 and 𝐂𝟐 ensure that the transmitted power is non-

negative, 𝐂𝟑 and 𝐂𝟒 correspond to the desired SINR constraints for user 1 

(𝑇1) and user 2 (𝑇2) respectively, and 𝐂𝟓 and 𝐂𝟔 enforce the properties of the A-

RIS. When we consider the performance of a conventional phase only RIS, 

constraint 𝐂𝟓 is replaced with 𝛽𝑛 = 1. As seen in (3.39), the resulting objective 

function and constraints are both non-linear and non-convex, so we address this 

problem using numerical optimization. 

3.4 Resources Allocation in IAB Networks 

In this section, we describe the system model and algorithmic framework 

of Stackelberg game. 

3.4.1 System Model 

We consider an IAB heterogeneous network (HetNet). As shown in Figure 

9, this network consists of 𝑁 nodes, where the node index in the network is 𝑛 ∈

 𝓐, where 𝓐 = ሼ1, 2, 3, . . . , 𝑁ሽ. Set 𝓐 contains 2 subsets of nodes: (i) the subset 

of donor nodes consists of 𝐷 nodes, which represent macro base stations (MBSs) 

in the mobile network, and (ii) the IAB nodes subset consists of 𝐾 nodes, which 

represent the small BSs (SBSs) that surround the MBSs. In this network, only the 

MBSs are connected through optical fiber to the core network and the SBSs use 

wireless connections for the backhaul link to connect each other and to connect 

with the MBSs. The connection between the nodes could be one hop or multi-

hop.  Every node 𝑛 ∈  𝓐 is considered to has a known load described in load set 
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𝓛 = ሼ𝐿1, 𝐿2, … , 𝐿𝑁ሽ. The IAB architecture is based on a hierarchical or a cyclical 

structure, where it is well-defined if a certain node is “above/parent” or 

“below/child”. 

We consider the information flows in the downlink directions. We assume 

that each node has multiple connections with the other surrounding nodes, but 

one connection will be adopted for simplicity, and a donor node does not have 

any connection to other donor nodes in the network. The link between each pair 

of nodes 𝑖 and 𝑗 has a defined capacity 𝑊𝑖𝑗. 

 

 

Figure 9: Schematic system model of IAB HetNet. 

3.4.1.1 Node Load 

The load of each node includes the load generated by the end-users 

connected to this node in addition to the load of other nodes passed from this 

node. The load can be considered as an instantaneous value at each time slot or 

average value during a time duration.  Channel conditions such as interference 

and noise are not considered in our study.  

The network-wise load set 𝓛 plays a key role in the performance modelling, 

where a well-designed network shall be able to meet the target scenarios with 

the optimum offloading strategies. 

3.4.1.2 Link Capacity 

Link capacity 𝑊𝑖𝑗 is the maximum amount of traffic that a link can handle 

between node 𝑖 and node 𝑗. The capacity is assumed to be an abstract value that 



                                                                         

39 
 

H2020-MSCA-ITN-2019-GA861165 

D1.3: Performance evaluation and experimentation 

is independent from the network constraints like: the distance between the nodes, 

or the SINR. 

3.4.1.3 The Connectivity Matrix (CM) 

 By defining the connections between the nodes in the IAB network, the matrix 

dimension is 𝑁 × 𝑁 and its elements 𝑪𝑴 values are assigned based on the link 

capacities 𝑊𝑖𝑗. The values of 𝑪𝑴 members are determined based on the following 

rules:  

• Equal to zero if there is no connection between node 𝑖 and node 𝑗. 

• Equal to the link capacity weight if there is a connection between the nodes. 

• The main diameter elements will equal to zero for the normal IAB nodes, 

while they will equal to the link capacity for the IAB donor nodes that is 

connected to the core network. 

We denote by ℰ𝑖
− and ℰ𝑖

+ the set of outgoing and incoming arcs of node 𝑖, 

respectively. The previous considerations lead to CM for the one hop connection 

with the following formula: 

𝐶𝑀𝑖𝑗
 = {

𝑊𝑖𝑗 ; 𝑖𝑓  𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                          (3.43) 

𝑪𝑴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                  
       
 𝑾𝟏,𝟏

 𝟎 … 𝟎 𝑾𝟏,𝑫+𝟏        … 𝑾𝟏,𝑵

       
 𝟎 𝟎 … 𝟎 𝑾𝟐,𝑫+𝟏          … .
       
 𝟎 𝟎 … 𝟎    …     … .
       
 𝟎 𝟎 … 𝑾𝑫,𝑫    …      … .
       
 𝟎 𝟎 … 𝟎   𝑾𝑫+𝟏,𝑫+𝟏          … 𝑾𝑫+𝟏,𝑵

 . . . .       .       … .
 . . . .       .       … .
 . . . .       .        … .
 𝟎 𝟎 … 𝟎      𝟎       … 𝑾𝑵,𝑵

 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

            (3.44) 

where 𝑁 is the total number of nodes in the topology, and 𝐷 is the number of 

donor nodes. The donor nodes are the first 𝐷 elements in the connectivity matrix. 

The elements below the main diagonal of 𝑪𝑴 are zero because 𝑪𝑴 represents 

the down link case only. 
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To distinguish donor nodes from normal ones, we assume that the main 

diagonal of 𝑪𝑴 equal to the node capacity of donor nodes and equal to zero for 

normal nodes, i.e.,  

𝐶𝑀𝑖𝑖
 = {

𝑊𝑖𝑖; 𝑖𝑓 𝑖 ≤ 𝐷
0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 .                                     (3.45) 

There is no connection between donor nodes, i.e., 

𝐶𝑀𝑖𝑗
 = 0; 𝑖𝑓 𝑖 ≤ 𝐷 𝑎𝑛𝑑 𝑗 ≤ 𝐷 𝑎𝑛𝑑 𝑖 ≠ 𝑗.                     (3.46) 

The connectivity matrix represents an input to the proposed method. The 

proposed method will then manipulate the connectivity matrix in addition to other 

parameters such as load and requirements and give the solution. The solution 

includes among many outputs a new version of the connectivity matrix that 

determines the best paths for each node. In this matrix, each node will connect 

only with one donor node.  

The output connectivity matrix includes a set 𝓢 = ሼ𝒮1, 𝒮2, … ሽ of disjointed 

spanning trees. Each spanning tree contains at least one donor node. A matrix 

element with a zero value in the original connectivity matrix will remain zero in the 

output connectivity matrix. Other matrix elements will take the same values as in 

the original matrix if they belong to the same spanning tree, and zeros otherwise. 

In other words, if node 𝑖 is from spanning tree 𝒮𝑝 (𝑖 ∈ 𝒮𝑝), and node 𝑗 is from 

spanning tree 𝒮𝑞(𝑗 ∈ 𝒮𝑞), the element 𝐶𝑀𝑖𝑗
′  is determined as: 

𝐶𝑀𝑖𝑗
′ = {

𝐶𝑀𝑖𝑗
  ; 𝑖𝑓  𝑝 = 𝑞

0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                         (3.47) 

Given the problem statement, we can construct a Stackelberg game to optimize 

the network topology of the IAB HetNet. The leaders in this game would be the 

MBSs (𝐷 nodes) or SBSs (𝐾 nodes), and the followers would be the SBSs (𝐾 

nodes). The leaders will make decisions to optimize their own utility, considering 

the potential reactions of the followers. 

3.4.2 Stackelberg Game Design 

Stackelberg game is a strategic game that models a scenario with both 

leaders and followers interacting sequentially. It is a bi-level optimization problem 

where the leaders make their decisions first, followed by the reactions of the 

followers. In this game, there are two types of players: leaders and followers. The 

leaders move first by choosing their optimal strategies, considering how the 

followers may react. After observing the leaders' moves, the followers then 
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choose their best responses to optimize their own utilities, given the leaders' pre-

committed strategies.  

This hierarchical decision-making process is captured via the concept of 

'Stackelberg equilibrium'. It is the sub-game perfect Nash equilibrium of the 

extended game where the followers anticipate the leaders' moves. For the 

equilibrium to exist, the leaders strategize to maximize their utility by looking 

ahead at the potential follower reactions, while followers optimize by considering 

the leader strategies as constraints. The equilibrium achieves stability as no 

player can benefit by deviating unilaterally from the prescribed strategies 

considering how others play. 

By modeling leadership influence, it generalizes Nash equilibrium to 

strategic scenarios with asymmetric information and bargaining power. 

Stackelberg games have wide applications in economics, security, supply chain 

management and other hierarchical decision problems. 

3.4.2.1 Players  

There are two types of players: providers (leaders), and consumers 

(followers). When the interaction is between Macro Base Stations (MBSs/D 

nodes) and Small Base Stations (SBSs/𝐾 nodes), we consider the first as 

leaders, and the later as followers. When the interaction is between some MBSs, 

the MBSs which serve the other MBSs become leaders, and the MBSs which get 

the service are considered as followers. 

3.4.2.2 Strategies 

The following strategies have been taken into account: 

• The Leaders select a subset of consumers (SBSs) to connect to, 

considering their capacity (𝑊𝑖𝑗) and current load (𝐿𝑖). The leaders 

want to optimize their connections to minimize the load and 

maximize the capacity. 

• The Followers select a provider (MBS or SBS) to connect to based 

on the decision of the leader. The followers want to connect to a 

leader that optimizes their own utility, considering their current load 

and the capacity of the connection.  

• The considered structure is multi-level connections, where MBSs 

are at the high level and the first level of SBSs is connected to the 

MBS as followers, and they connected to the second level of SBSs 

as leaders, where they provide the second level of SBSs with a 

capacity. 
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3.4.2.3 Payoff Functions 

The leaders' utility function can be defined as: 

𝑈𝐷  =  𝑊𝑖𝑗  −  𝛼𝐿𝑖                                                (3.48) 

where 𝑊𝑖𝑗 represents the capacity of the connection between leader node 𝑖 and 

SBS 𝑗, 𝐿𝑖 represents the current load on leader node 𝑖, and 𝛼 is a weighting factor 

that determines the trade-off between maximizing capacity and minimizing load. 

The utility function of the leaders captures their objective of maximizing the 

capacity of their connections while minimizing their own load. The term 𝑊𝑖𝑗 

represents the positive utility gained from having a high-capacity connection, 

while the term 𝛼𝐿𝑖 represents the negative utility incurred from a high load on the 

leaders. Followers' utility function: it can be defined as: 

𝑈𝐾  =  𝑊𝑖𝑗  −  𝛽𝐿𝑗                                     (3.49) 

where 𝑊𝑖𝑗  represents the capacity of the connection between leader node 𝑖 and 

SBS 𝑗, 𝐿𝑗 represents the current load on the follower SBS 𝑗, and β is a weighting 

factor that determines the trade-off between maximizing capacity and minimizing 

load. 

The utility function for the followers reflects their objective of maximizing 

their own utility based on the capacity of the connection and their own load. The 

term 𝑊𝑖𝑗 represents the positive utility gained from having a high-capacity 

connection to their chosen providers, while the term 𝛽𝐿𝑗  represents the negative 

utility incurred from a high load on the SBS. 

These utility functions can be customized further based on the specific 

requirements and characteristics of the IAB HetNet scenario under consideration. 

The choice of weighting factors (𝛼 and 𝛽) will depend on the relative importance 

assigned to capacity and load in the decision-making process. 

3.4.2.4 Nash Equilibrium Existence 

Given the described Stackelberg game, we can prove the existence of a 

Nash Equilibrium by showing that the game is a potential game. A potential game 

is a game which has a potential function, which is from the set of strategies to the 

real numbers, such that any player's marginal incentives to change their strategy 

(keeping others' strategies fixed) coincide with the change in the potential 

function. In potential games, a Nash Equilibrium always exists. Formally, given a 
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game with a finite set of 𝑛 players, each having a finite set of actions, and a real-

valued payoff function for each player, the game is a potential game if there exists 

a function 𝚽: 𝑨𝟏 ×  𝑨𝟐 × . . .×  𝑨𝒏 →  𝑹, where A𝑖 is the set of actions for player 

𝑖, such that for any players 𝑖 and 𝑗, any action profile 𝑎 and 𝑏 that differ only in 

the action of player 𝑖, the difference in the payoff for player 𝑖 caused by changing 

his action from 𝑎 to 𝑏 is the same as the difference in the potential function: 

𝑈𝑖(𝑏) - 𝑈𝑖(𝑎) = Φ(𝑏) −  Φ(𝑎)                                   (3.50) 

where 𝑈𝑖 represents the utility function for player 𝑖. 

Now, let's consider the utility functions for the leaders and followers in the 

given Stackelberg game: 

𝑈𝐷  =  𝑊𝑖𝑗  −  𝛼𝐿𝑖 for the leaders 

𝑈𝐾  =  𝑊𝑖𝑗  −  𝛽𝐿𝑗 for the followers                           (3.51) 

We can construct a potential function 𝛷 based on these utility functions as 

follows: 

Φ = ∑𝑗 (𝑊𝑖𝑗  −  𝛼𝐿𝑖) + ∑𝑘 (𝑊𝑘𝑗  −  𝛽𝐿𝑗)                        (3.52) 

where the first summation is over all 𝑗 (followers/SBSs) and the second 

summation is over all 𝑘 (leaders/MBSs). 

Now, if a leader i changes its strategy, its payoff change 𝑈𝐷 would be: 

𝛥𝑈𝐷  =  𝛥𝑊𝑖𝑗  −  𝛼𝛥𝐿𝑖                                        (3.53) 

The change in the potential function would be: 

ΔΦ = 𝛥∑𝑗 (𝑊𝑖𝑗  −  𝛼𝐿𝑖) + 𝛥∑𝑘 (𝑊𝑘𝑗  −  𝛽𝐿𝑗)                        (3.54) 

As we can see, 𝛥𝑈𝐷 =  𝛥𝛷 for the leader 𝑖. Similarly, we can show that when a 

follower 𝑗 changes its strategy, its payoff change 𝑈𝐾 equals the change in the 

potential function 𝛥𝛷. Hence, the given Stackelberg game is a potential game 

and, therefore, a Nash Equilibrium exists. 
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4 Performance evaluation and experimentation 

4.1 Evaluation of Machine Learning based mmWave Beam Prediction 

In this section, we evaluate the performance of our proposed algorithm 

and compare it with the state of the art. More specifically, we define dataset 

generation, simulation parameters, considered scenarios, key performance 

indicators (KPIs) for performance evaluation, followed by the performance 

evaluation and comparison.  

4.1.1 Simulation Parameters and Dataset Generation 

For dataset generation, we utilize exhaustive beam search (EBS) and 

multi-resolution hierarchical beam search (HBS). The training dataset consists of 

RSRP values obtained via HBS and the labels are obtained via EBS. During 

training, the task for the ML model is to learn the relation between RSRP values 

and the ideal beam IDs. During the inference only, the RSRP values are provided 

to the input of ML model, and the ML model infers the optimal beam IDs. 

Simulation parameters are detailed in Table 2.  

Table 2: List of simulation parameters of machine learning based mmWave beam prediction. 

Parameter  Values 

No. of BS antennas 𝑀𝑇𝑋 64 

No. of UE antennas 𝑀𝑅𝑋 8 

BS codebook size 𝑁𝑇𝑋 64 

UE codebook size 𝑁𝑅𝑋 8 

Transmit power 𝑃 30 dBm 

Center frequency 𝑓𝑐 28 GHz 

Bandwidth 𝐵 100 MHz 

Noise power 𝜎2 174 +  10𝑙𝑜𝑔10 𝐵 + 𝑁𝐹 

Pathloss model  20 log10 𝑑 + 20 log10 𝑓𝑐 − 147.56 

Channel model  Clustered Delay Line (CDL) 

To evaluate generalization capabilities of proposed model, we consider 

following three scenarios: 

• Scenario 1: The ML model is trained with a dataset created by utilizing 

CDL-D channel profile and ML model testing is done on CDL-D channel 

profile.  

• Scenario 2: The ML model is trained with a dataset created by utilizing 

CDL-D channel profile and ML model testing is done on CDL-E channel 

profile.  
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• Scenario 3: The ML model is trained with a dataset created by utilizing 

CDL-D and CDL-E channel profile and ML model testing is done on CDL-

D and CDL-E channel profile.  

The dataset consists of 25000 data samples, where 70% is used for 

training, 10% for validation, and 20% for testing. Further, we consider mean 

squared error as the loss function and the model is trained via Adam optimizer. 

4.1.2 Key Performance Indicators  

We evaluate and compare the performance of our proposed model in 

terms of beam prediction accuracy, beam measurement overhead, and average 

achieved RSRP. The beam prediction accuracy is defined as the percentage that 

the optimal beam is among the K best beam predicted by the ML model. The 

beam measurement overhead is defined as the ratio of 
𝑁

𝑀
, where 𝑁 is the number 

of measurements required by the ML model and 𝑀 is the number of total beams 

to be predicted. Further, for complexity comparison of our proposed model, we 

use number of trainable parameters and model size as the KPI. 

4.1.3 Simulation Results 

For performance evaluation, in addition to the traditional EBS and HBS, 

we compare the performance of our proposed model with a CNN based approach 

from [ECB+21] and fully connected ANN based approach in [HA21]. 

4.1.3.1 Performance Evaluation 

Figure 10 evaluates the performance in terms of beam prediction accuracy 

and beam measurement overhead. In terms of beam prediction accuracy, EBS 

achieves highest beam prediction accuracy. However, this accuracy is achieved 

at the cost of higher beam measurement overhead. Further, HBS achieves an 

accuracy of around 94% but at the cost of additional delay as HBS requires two 

measurement cycles to identify the best beam. For ML Top-1, the proposed 

model achieves similar accuracy as other ML models but with significantly lower 

computational complexity as discussed in the next sections. Additionally, ML 

methods achieve less accuracy as compared to EBS but ML methods incur 

significantly lower beam measurement overhead as shown on the right hand axis 

of Figure 10. Figure 11 shows the average achieved RSRP of our proposed 

model. Here, it can be observed that all the approaches achieve similar RSRP 

indication that ML methods with much lower beam measurement overhead can 

achieve similar performance as EBS with full measurement overhead. 
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Figure 10: Comparison of beam prediction accuracy and beam measurement overhead. 

 

Figure 11: Comparison of average achieved RSRP [dBm]. 

We now evaluate generalization capabilities of our proposed model based 

on the scenarios defined earlier. Figure 12 shows that the performance of the ML 

model reduces by around 7% over scenario 2. It is because of the different 

channel profiles during training and testing. Furthermore, it can be observed that 

the performance of the ML model improves over scenario 3 when the ML model 

is trained and tested on combined dataset from different channel profiles. 

However, the performance in scenario 3 is still less as compared to scenario 1. 

This indicates that there exists a tradeoff between ML model prediction accuracy 

and its generalization capabilities.   
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Figure 12: Analysis of generalization capabilities of proposed model. 

4.1.3.2 Complexity Analysis 

For evaluating and comparing the performance of our proposed model, we 

now compare its complexity with other approaches. For complexity of an ML 

model, the number of trainable parameters is an important measure. Additionally, 

we also compare complexity in terms of model size by assuming 32-bit precision. 

Table 3 presents the complexity comparison of our proposed model with 

the state of the art. Here, it can be observed that the proposed model benefits 

from much lower computational complexity as compared to other ML-based 

approaches. The reduced complexity of our proposed model allows faster beam 

prediction and reduced retraining time. 

Table 3: Complexity comparison between different machine learning based mmWave beam 

prediction algorithms. 

 Number of Trainable  

Parameters 

Model Size 

(Mbits) 

CNN from [ECB+21] 352,034 11.2 

FC-NN from [HA21] 17,728 0.5 

Proposed model 1,088 0.04 

To conclude, we have proposed an ML-based mmWave beam prediction 

model that reduces the beam measurement overhead and predicts the transmit 

beam index with higher accuracy and lower computational complexity than the 

considered state-of-the-art approaches. The lower computational complexity of 

the proposed model results in reduced beam prediction time enabling faster 

prediction and faster retraining.  
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4.2 Evaluation of Full-duplex mmWave Massive MIMO Channel 

Estimation 

In this section, we present our simulation results for SI and UE channel 

estimation. We compare channel estimators that we introduced in previous 

sections, i.e., LS, MMSE, and NN for different pilot dimensions. The normalized 

MSE (NMSE) is considered the performance metric to analyze the performance 

of the different channel estimators and it is defined as 

NMSE = 𝔼[
ȁȁ𝐇𝐭𝐫𝐮𝐞−𝐇𝐞𝐬𝐭ȁȁ𝐹

2

ȁȁ𝐇𝐭𝐫𝐮𝐞ȁȁ𝐹
2 ]                                        (4.1) 

where 𝐇𝐭𝐫𝐮𝐞 and 𝐇𝐞𝐬𝐭 are the true and estimated channel, respectively. We set 

the number of antenna elements of transmit and receive antenna arrays to 16, 

with a distance of 10𝜆 between them, and antenna spacing in transmit and 

receive arrays is 𝑑 =
𝜆

2
. The operating frequency is 28 GHz, corresponding to a 

wavelength of 𝜆 = 10.71 mm. The total number of downlink and uplink UEs is 8. 

The path loss parameters are based on experimental results from [S+16], where 

the path loss constant at the reference distance is Γ = −72 dB, the path loss 

exponent is 𝜂 = 2.92, and the Shadow fading standard deviation is 𝜎𝑠𝑓 = 8.7 dB. 

The number of multi-path components is P = 5 and AS is 𝜃𝐴𝑆 = 60∘. The SI Rician 

factor is 𝜇 = 40 dB and we assume that the propagation SI cancellation is 𝜖𝑆𝐼 =

−40 dB. 

The NN-based channel estimators are trained on Python 3.9.13 and 

implemented using the Keras libraries with a TensorFlow backend in the Jupyter 

Notebook environment. We employ Adam optimizer with a batch size of 512 to 

update the network parameters. A dataset of 50000 samples is collected based 

on the channel model and it is split into 20,000 samples for training, 20,000 

samples for validation, and 10,000 samples for testing. The validation dataset is 

used to ensure that the model does not simply memorize the training data but 

learns meaningful aspects of the data for effective prediction. 

4.2.1 Analyzing NN-based Channel Estimator 

Before examining the different channel estimators for various pilot 

dimensions. We conducted several experiments to understand the behavior of 

NN-based channel estimators under different channel conditions and NN 

architectures for training. The following results are specific to SI channel 

estimation with a pilot dimension of 𝜏 = 𝑁𝑡 + 𝐾. However, the same conclusions 

can be drawn for other pilot dimensions and UE channel estimations. For the 

sake of brevity, we have not included plots for other pilot dimensions and UE 

channel estimation. Throughout our simulation, we assume perfect knowledge of 
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the channel covariance matrix for the MMSE channel estimator to compare the 

NN-based estimator with the best case of MMSE estimation. 

Figure 13 illustrates the NMSESI versus SNRSI with different numbers of 

hidden layers and SNRtrain. Due to the discrepancy between SNR during the 

training and testing phases, the results slightly differ for different SNRtrain. It is 

evident that training in a specific SNR regime yields slightly better performance 

in that regime. However, a significant gap can be observed with high SNRtrain. 

Furthermore, we observe that the simplest CNN architecture, without any hidden 

layers and with just two convolutional kernels, outperforms CNNs with more 

hidden layers at high SNRs, while the NMSE is slightly worse at low SNRs. This 

observation suggests that incorporating more hidden layers in data-driven DNN-

based channel estimation does not provide significant improvement. In fact, in 

high SNRs, it may lead to a deterioration in NMSE. It is important to note that we 

have explored other CNN architectures for this problem, such as CNN 

autoencoder, and observed the same behavior. 

 

Figure 13: NMSESI versus SNRSI for different SNRtrain and hidden layers. 

The results above represent the performance for fundamental channel estimation 

problem in multi-antenna systems, where the relationship between the received 

pilot signal and the channel is assumed to be linear. However, in practical 

scenarios, various non-linear distortions in hardware components exist, which 

adds complexity to this problem. This raises doubts about the applicability of the 

previous conclusion when the received pilot signal is affected by non-linear 

effects. To address this question, we consider the introduction of 1-bit ADCs at 
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the BS to incorporate a non-linear distortion effect into the received pilot signal. 

When employing 1-bit ADCs, the received pilot signal will be 

𝐘𝟏−𝐛𝐢𝐭 = sgn(𝐘𝐒𝐈)                                           (4.2) 

where sgn(. ) is the element-wise signum function. Once again, we apply CNN 

with a varying number of hidden layers and SNRtrain to address the channel 

estimation problem with 1-bit ADCs. In this case, the input to the CNN is 𝐘
^

𝟏−𝐛𝐢𝐭 =

𝐘𝟏−𝐛𝐢𝐭𝐖𝐍𝐭×𝜏
𝐇 , and the output is the estimated channel. Figure 14 presents the 

NMSE of the LS, MMSE, and CNN-based channel estimators. As observed from 

this figure, the addition of hidden layers hardly improves the quality of channel 

estimation in this scenario. Therefore, even in the case of 1-bit ADCs, where the 

relation between the received pilot signal and the channel is non-linear, 

incorporating non-linear hidden layers does not significantly improve the 

prediction. 

 

Figure 14: NMSESI versus SNRSI for 1-bit ADC BS for different SNRtrain and hidden layers. 

For the next experiment, we examine the behavior of the NN-based 

channel estimator under two different spatial channel correlation conditions: 

highly correlated channels and low correlated channels. The plots in Figure 15 

illustrate how the LS, MMSE, and NN-based estimators perform under different 

spatial channel correlation strengths. In the highly correlated scenario, the MMSE 

estimator can leverage the perfect channel covariance matrix, resulting in a 

significant improvement in estimation quality. This leads to a substantial gap 

between the LS and MMSE estimations. However, in an uncorrelated channel, 
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both the LS and MMSE estimations converge to the same NMSE at high SNRs. 

Comparing the NN-based estimation with the LS and MMSE estimations in both 

low correlated and highly correlated channel conditions provides interesting 

insights into the behavior of the NN-based estimator. In the uncorrelated 

scenario, the NN-based estimator outperforms both the MMSE and LS 

estimations. However, in highly correlated channel conditions, the MMSE 

estimator consistently outperforms the NN-based estimator. This observation 

suggests that the NN-based estimator, in a data-driven manner, is not capable of 

utilizing the second-order statistics of the channel for estimation, as the MMSE 

estimator does. 

Furthermore, when comparing the NN-based estimator with the LS and 

MMSE estimators at low SNRs in highly correlated scenarios, it indicates that the 

NN performs well in handling noise. 

 

(a) 
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(b) 

Figure 15: NMSESI versus SNRSI for (a) uncorrelated channel and (b) highly correlated channel. 

4.2.2 SI and UE Channel Estimation for Different Pilot Dimensions 

In the figures presented below, we examine the performance of SI 

estimations for different pilot dimensions. For this simulation, we have set 𝜃𝐴𝑆 =
𝜋

3
 and trained CNNs at an SNR of 20 dB. The NMSE of SI channel estimation vs 

SNRSI and SNRUE are provided in the following figures for different pilot 

dimensions, respectively. The results demonstrate that the CNN-based estimator 

outperforms the LS and MMSE estimators across all pilot dimensions. Moreover, 

from Figure 17, it is evident that the CNN-based approach is more resilient to 

interference from UEs when compared to the MMSE and LS estimation methods. 

Using fewer pilot dimensions leads to a significant reduction in the quality 

of channel estimates for the CNN, MMSE, and LS-based approaches. However, 

this reduction in pilot dimensions results in saving more resources that can be 

allocated to transmitting payload data. The trade-off between the performance of 

channel estimates and the number of pilot dimensions used depends on the 

required accuracy threshold for channel estimates and the system data rate. 
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Figure 16: NMSESI versus SNRSI for different pilot dimensions, SNRUE = 0 dB. 

 

Figure 17: NMSESI versus SNRUE for different pilot dimensions, SNRSI = 0 dB. 
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Figure 18: NMSESI versus SNRUE for different pilot dimensions, SNRSI = 10 dB. 

 

Figure 19: NMSESI versus SNRSI for different pilot dimensions, SNRUE = 5 dB. 

We have also generated similar plots for UE channel estimation, showing 

the NMSE with respect to SNRUE and SNRSI. The plots are presented in Figure 

18 and Figure 19 respectively, with varying pilot dimensions. 

From the results, it is evident that the CNN-based approach using shorter 

pilot dimensions like 𝜏 = 𝑁𝑡 or 𝜏 = 𝐾 outperforms LS channel estimation with 

longer pilot dimensions 𝜏 = 𝑁𝑡 + 𝐾. Even MMSE channel estimator, when 
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provided with perfect channel covariance matrix knowledge and longer pilot 

dimensions (e.g., 𝜏 = 𝑁𝑡 + 𝐾), is unable to outperform the CNN-based technique 

with shorter pilot dimensions (e.g., 𝜏 = 𝑁𝑡). These findings clearly demonstrate 

the superiority of CNN in accurately estimating wireless channels, particularly in 

scenarios with lower SNRs and higher interference. 

To further analyze the effect of SI cancelation on UE channel estimation, 

we conducted another experiment for the pilot dimension 𝜏 = 𝐾. We considered 

two cases where for the first case, we cancel out the effect of the SI signal from 

the received pilot signal with the estimated SI channel while in the second 

scenario, we estimate UE channels in the presence of interference from the SI 

channel. The results are shown in Figure 20. Note that when calculating the 

MMSE estimation, in the case of SI cancelation, we incorporate the error 

covariance matrix of the estimated SI channel together with the covariance matrix 

of the UE channels while for the scenario without SI cancelation, we exploit the 

covariance matrix of both SI and UE channels. We can observe that MMSE 

estimations for these two scenarios result in the same NMSE of UE channel 

estimates. By comparing the results for LS, MMSE, and CNN channel estimators, 

we can realize that the SI cancelation during the pilot transmission phase does 

not provide significant improvement. 

To examine the performance of NN-based channel mapping between 

receive and transmit antenna arrays at BS with a separate antenna configuration, 

we plotted the NMSE of this mapping with respect to varying angular spread and 

two different numbers of antennas in Figure 21. We trained an FCNN without 

hidden layers at [10, 100, 190, 280] degrees of angular spread during the training. 

From this figure, it is evident that NN is able to predict the channel between 

transmit antenna arrays and UEs from the channel between receive antenna 

arrays and UEs. The prediction is more accurate in lower angular spread due to 

higher spatial correlation and vice versa. Furthermore, increasing the number of 

antennas improves the quality of prediction as angular regulation increases when 

employing a larger number of antenna arrays. 
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Figure 20: UE channel estimation with/without SI cancelation τ = K,  SNRSI = 20 dB. 

 

Figure 21: NMSE of channel mapping between receive and transmit antenna arrays vs angular 

spread. 

Finally, we compare the computational complexity of LS, MMSE, and NN 

channel estimators in terms of complex multiplications. The results are 

summarized in Table 4 and a bar plot is given in Figure 22 for SI channel estimation 

and pilot dimension 𝜏 = 𝑁𝑡. Note that we have ignored the computational 

complexity of the covariance matrix calculation for MMSE estimation, as the 

channel statistics do not typically change during several coherence blocks. For 
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the same reasons, we also ignored the computational complexity of the matrices 

in the MMSE formula that depend on spatial correlation matrices, assuming they 

can be pre-computed and used until the channel statistics change substantially. 

For NN, we reported the computational complexity of a CNN network without 

hidden layers. 

According to Table 4, the number of complex multiplications exhibits 

quadratic growth with the number of received antennas in MMSE estimation, 

while for LS and NN-based estimation, it is linear. Furthermore, due to employing 

a basic NN architecture, the added computational complexity for the NN estimator 

is only slightly higher than LS estimation. 

Table 4: Number of complex multiplications for LS, MMSE and NN estimators. 

 LS MMSE NN 

SI 𝑁𝑟𝑁𝑡𝜏 𝑁𝑟
2𝑁𝑡𝜏 𝑁𝑟𝑁𝑡𝜏+36𝑁𝑟𝑁𝑡 

UE 𝑁𝑟K𝜏 𝑁𝑟
2K𝜏 𝑁𝑟K𝜏+36𝑁𝑟K 

 

Figure 22: Number of complex multiplications for SI channel estimation of different estimators. 

4.3 Evaluation of Non-orthogonal Multiple Access 

In this section, we study the relative performance of the considered system 

with an A-RIS, with a conventional phase-only RIS, and without any kind of RIS. 
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We assume that all channels in our system model illustrated in Figure 3 are 

Rayleigh fading, but with different channel gains, and we solve the optimization 

problem (3.40) using the parameters in  Table 5. In the results, we present the 

required total power for the two UEs to meet the target SINRs 𝑇1 and 𝑇2 

normalized with the BS noise, i.e. (𝑝1 + 𝑝2)/𝜎
2.  In all the presented results, the 

resulting SINRs 𝛾1 and 𝛾2 for 𝑈𝐸1 and 𝑈𝐸2, respectively, are verified to satisfy the 

targets 𝑇1 and 𝑇2,  respectively. In fact, 𝑇1 and 𝑇2 are met with equality, which 

indicates the optimality of the numerical optimization results. 

Table 5: Summary of key parameters for non-orthogonal multiple access evaluation. 

 

In Figure 23, we show the resulting required total transmit power as a 

function of the number of RIS elements in the presence of a jammer with 𝑀 = 4 

antennas. As it can be seen, a regular non-absorbing RIS is beneficial compared 

with no RIS provided the RIS is equipped with more than 𝑁 = 2 elements, 

whereas the A-RIS has a performance gain for all considered 𝑁 = 2. 
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Figure 23: Required total transmit power to meet the user quality of service requirements in the 

presence of a jammer with M = 4 antennas, as a function of the number of RIS elements. 

In  Figure 24 and Figure 25, we show the corresponding results for a 

jammer with 𝑀 = 8 and 𝑀 = 16 elements, respectively. The relative 

performance for the no RIS, regular RIS, and A-RIS is the same, but due to the 

stronger jammer, the crossing point for the regular RIS increases with the number 

of jammer antennas 𝑀. It is also interesting to note that, compared to the no RIS 

case, the required total transmit power more than doubles when the number of 

jammer antennas is increased from 𝑀 = 4 to 𝑀 = 8 although the total jammer 

power is only doubled. That can likely be explained by the additional beamforming 

gain for the jammer. Increasing the number of jammer antennas from 𝑀 = 8 to 

𝑀 = 16 results in just slightly more than doubled the required total transmit 

power, which can most likely be explained by saturation in the beamforming gain. 

Another interesting observation is that when the RIS is very small, e.g., with only 

4 or 8 elements, the performance with a conventional phase-only RIS is actually 

worse than if no RIS were present at all. This is because the conventional RIS 

does not have a sufficient number of degrees of freedom to eliminate the 

interference, and its presence as a reflector only serves to actually increase the 

interference seen by the BS. The A-RIS is able to control the amount of reflected 

energy in addition to the phase shifts and thus does not suffer from this drawback. 
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Figure 24:  Required total transmit power to meet the user quality of service requirements in the 

presence of a jammer with M = 8 antennas, as a function of the number of RIS elements.  

 

Figure 25: Required total transmit power to meet the user quality of service requirements in the 

presence of a jammer with M = 16 antennas, as a function of the number of RIS elements. 

In Figure 26, we show the resulting average absorption level of the A-RIS 

as a function of the number of A-RIS elements in the presence of a jammer with 

𝑀 =  4, 8, 16  antennas. As it can be seen, the absorption capability of the A-

RIS is very useful when the degrees of freedom required for the A-RIS to mitigate 

the jammer is low, i.e., when the number of A-RIS elements 𝑁 is small compared 
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to the number of jammer antennas 𝑀. With increasing 𝑁, the average absorption 

level of the A-RIS elements is monotonically decreasing, and thus the operation 

of the A-RIS approaches that of the regular non-absorbing RIS, which is in line 

with the results in Figure 23 to Figure 25 showing that the performance of a 

conventional RIS is approaching the performance of the A-RIS as the number of 

elements increases. 

 

Figure 26: Resulting average absorption level of the A-RIS as a function of the number of A-RIS 

elements in the presence of a jammer with M = 4, 6, 16 antennas. 

Finally, in Figure 27, we show the total transmit power required to meet 

the user quality of service requirements as a function of the number of jammer 

antennas for the cases of no RIS, a conventional RIS, and an A-RIS, both with 

𝑁 = 16 elements. It can be observed that the greater the number of jammer 

antennas, the more beneficial is the use of RIS technology, and the additional 

benefits of RIS absorption rapidly increases when the number of jammer 

antennas is more than 𝑀 = 4. 



                                                                         

62 
 

H2020-MSCA-ITN-2019-GA861165 

D1.3: Performance evaluation and experimentation 

 

Figure 27: Required total transmit power to meet the user quality of service requirements, as a 

function of the number of jammer antennas, for the cases of no RIS, a regular RIS, and an A-RIS, 

both with N = 16 elements. 

4.4 Evaluation of Integrated Backhaul and Access  

In this section, we evaluate the performance of our proposed algorithm for 

distributed resource allocation in IAB networks. A simulation setup is created to 

emulate an IAB HetNet topology consisting of multiple macro and small base 

stations. 

4.4.1 Simulation and Primary Results 

The primary goal is to satisfy the SBS load as much as possible while considering 

achieving load balance for the MBS donor nodes. Figure 28 shows the load on 

the donor nodes. In the proposed method, the figure shows that the load is 

balanced as the percentage usage is similar and there is no significant 

discrepancy in the distribution of the load. However, in the random resources 

allocation method, some donor nodes are fully occupied while others are not, 

leading to an unbalanced load distribution. 
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Figure 28: Load percentage over the donor nodes. 

Figure 29 shows that the load of each SBS is served in the proposed method by 

ensuring complete offloading for all nodes, while in random allocation, many 

SBSs nodes are not perfectly served as a result of the misdistribution of the 

connection between the SBSs nodes and the MBSs. 

 

Figure 29: Load percentage over the IAB nodes. 

From the previous two figures, we conclude that the SBS nodes are connected 

almost ideally with the donor nodes using the proposed method; the load of the 

SBS is served without reaching a bottleneck state for the donor nodes.  



                                                                         

64 
 

H2020-MSCA-ITN-2019-GA861165 

D1.3: Performance evaluation and experimentation 

5 Research Progress and Next Steps  

5.1 Machine Learning based mmWave Beam Management 

Due to the late start of ESR, we started our investigations of ML based BM 

at the beginning of 2022. We started our study with the detailed literature survey, 

the outcome of this phase was delivered in D1.2 and has been published in IEEE 

open access journal [KGP+23]. After completing the detailed literature survey, 

we started developing our simulation setup. The simulation setup is developed in 

MATLAB in combination with Pytorch for ML models. We simulated two traditional 

BM approaches namely EBS and HBS, which serve as a baseline for comparison 

with ML based BM approaches. Additionally, we also simulated two selected 

state-of-the-art ML based BM approaches from [ECB+21], and [HA21]. After 

having necessary simulation capabilities, we started working on spatial domain 

mmWave beam prediction and proposed a low-complexity beam prediction 

model, whose details are provided above. The proposed low-complexity ML 

model for mmWave beam prediction has been submitted to IEEE journal for 

publication. 

In summary, we have investigated the spatial domain beam prediction, 

which focuses on indoor environments and lower mobility scenarios. Higher 

mobility in outdoor environments requires beam prediction in temporal domain. 

Thus, the next step in our study is to evaluate the temporal domain beam 

prediction for ML based mmWave beam prediction. Some of the most common 

ML models that can be used for temporal domain beam prediction include RNN, 

LSTM networks and artificial intelligence transformers. We plan to study these 

models in our next steps. Finally, to cope up with everchanging wireless 

environments, we plan to study reinforcements learning based ML model for 

mmWave beam management.  

5.2 Full-duplex mmWave Massive MIMO Channel Estimation 

We have studied the channel estimation problem for full-duplex mmWave 

massive MIMO systems using NNs. The interference caused by simultaneous 

transmissions and receptions in full-duplex systems poses a significant challenge 

which makes SI channel estimation a critical problem for enabling full-duplex 

systems. Due to the large antenna arrays, SI is a large MIMO channel, making 

its resource estimation intensive in terms of time and frequency. 

To address the pilot overhead associated with SI channel estimation, we 

shared pilot resources between the transmit antenna arrays at the full-duplex BS 

and UEs. We explored different pilot dimensions and compared the performance 

of LS, MMSE, and NN-based channel estimation techniques in terms of NMSE. 



                                                                         

65 
 

H2020-MSCA-ITN-2019-GA861165 

D1.3: Performance evaluation and experimentation 

Furthermore, we conducted different experiments, such as varying the 

number of hidden layers, training SNR, introducing non-linear distortion in the 

received pilot signal, and examining channel spatial correlation strength, to 

understand how NNs perform channel estimation in various scenarios. Based on 

our experiments, we observed that using deep NNs with non-linear hidden layers 

is not beneficial for channel estimation problems. Moreover, we found that NNs 

employing a data-driven approach do not fully leverage spatial correlation 

compared to the MMSE estimator in highly correlated wireless channels. 

However, in scenarios where spatial correlation is not extremely high, our results 

demonstrated that NNs can outperform MMSE estimation, especially when using 

very low pilot dimensions. This performance allows for a reduction in pilot 

overhead in full-duplex systems and enables approaching the same pilot 

overhead levels required in half-duplex systems. Moreover, we introduced RX-

TX channel mapping for separate antenna configurations in full-duplex systems. 

To approximate this mapping, we used NNs, and the simulation results 

demonstrated that NNs can effectively map channels from receive antenna 

arrays to transmit antenna arrays, particularly in scenarios with high correlation 

and large antenna arrays. 

Lastly, our calculations of the computational complexity for LS, MMSE, and 

NN channel estimators revealed that NN-based estimation requires fewer 

complex multiplications compared to MMSE estimation with perfect knowledge of 

the channel covariance matrix. 

For the future works, we aim to focus CSI feedback in massive MIMO 

systems. To combat the problem of retraining a deep learning model when 

channel statistics changes noticeably, we propose to study an instance adaptive 

deep learning-based CSI compression technique. 

5.3 Non-orthogonal Multiple Access 

We started our research on NOMA in late 2020. We started our study with 

a detailed literature review of NOMA and RIS. In the second year, we minimized 

the total power transmitted by the user terminals under quality-of-service 

constraints by controlling the propagation from the users to the base station with 

the help of the RIS. Also, we published a conference paper in WCNC. Our next 

aim is to extend our system model and use different toolboxes for solving our 

problem formulation. In particular, we are working on more advanced optimization 

techniques in order to address more complex scenarios, such as RIS with 

hundreds of elements, multi-antenna base station and more users. A journal 

paper is under submission.  
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5.4 Resources allocation in IAB networks 

Due to the late start of ESR, we started our investigations of IAB in mobile 

networks in May 2022. We started our study with the detailed literature survey, 

the outcome of this phase was delivered in D1.2. 

After completing the detailed literature survey, we started developing our 

simulation setup. The simulation setup is developed in MATLAB, the setup has 

been created to emulate an IAB HetNet topology consisting of multiple macro and 

small base stations, and compare the new resource allocation algorithm with the 

random resource allocation. We plan to study the evaluation metrics in our next 

steps and the proposed Stackelberg game-based approach for distributed 

resource allocation in IAB networks. The key performance metrics like 

throughput, load balancing, latency etc. will be used to analyze the equilibrium 

and compare it with other benchmark approaches. Specifically, the following 

metrics will be considered for performance analysis: 

• Throughput cumulative distribution function (CDF): Analyze the CDF of 

throughput achieved at different nodes to evaluate fairness. 

• Load balancing: The load distribution across macro base stations will be 

studied to demonstrate the ability of the proposed approach to balance 

load in the network. 

• Network throughput vs number of nodes: This metric captures how total 

network throughput will be scaled with increasing node density. 

• Average node throughput vs network load: This analyzes the impact of 

varying total network traffic load on per-node performance. 

• Latency vs number of hops: End-to-end latency for flows traversing with 

different hop counts will be evaluated to study the effect of multi-hop 

routing. 

• Outage probability vs node density: These metric measures redundancy 

and reliability under different deployment densities. 

• Utility vs iterations: Convergence behavior of the iterative algorithm will be 

demonstrated by plotting change in total network utility over iterations. 

The above performance metrics will be presented, compared against 

baseline schemes, and analyzed to validate the effectiveness of the proposed 

approach. Results will then be submitted to a proper journal.  
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6 Conclusions 

In this deliverable, we have reported on the progress of the SEMANTIC ESRs 

contributions towards the objectives of WP1 (Spectrum and Forward-

Compatibility Aspects for multi-GHz NR operation).  

Key findings and intermediate performance evaluation results were reported. 

This includes results on beam-based transmissions in multi-GHz bands; low-

complexity techniques for channel estimation in massive MIMO in the mmWave 

band; distributed MIMO with focus on IAB; and NOMA for enhancing user 

experience in beyond 5G systems. 
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